Afshin, S., Rashtbari, Y., Vosough, M., Dargahi, A., Fazlzadeh, M., Behzad, A. & Yousefi, M. (2021). Application of Box–Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: kinetics & equilibrium study. JWPE, 42;102113.
Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R. & Wang, M.Q. (2021). Heavy metals & pesticides toxicity in agricultural soil & plants: Ecological risks & human health implications. Toxics, 9(3);42.
Anahid, S., Yaghmaei, S. & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Sci. Iran., 18(3);502-508.
Azevedo, M.M. & Cássio, F. (2010). Effects of metals on growth & sporulation of aquatic fungi. Drug Chem. Toxicol., 33(3);269-278.
Chew, A.W., Rahman, N.N., Kadir, M.O. & Chen, C.C. (2012), Dried & wet Trichoderma sp, biomass adsorption capacity on Ni, Cd & Cr in contaminated groundwater, IPCBEE, 10-11.
Dehghani, M.H., Tajik, S., Panahi, A., Khezri, M., Zarei, A., Heidarinejad, Z. & Yousefi, M. (2018). Adsorptive removal of noxious cadmium from aqueous solutions using poly urea-formaldehyde: a novel polymer adsorbent. MethodsX, 5;1148-1155.
Dixit, P., Mukherjee, P.K., Sherkhane, P.D., Kale, S.P. & Eapen, S. (2011), Enhanced tolerance & remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene, J. Hazard. Mater., 192(1);270-276.
Dugal, S. & Gangawane, M. (2012). Metal tolerance & potential of penicillium species for use in mycoremediation. Int. J. Chem. Pharm. Res., 4(5);2362-2366.
Ezeonuegbu, B.A., Machido, D.A. & Yakubu, S.E. (2015), Capacity of fungal genera isolated from refinery effluents to remove & bioaccumulate lead, nickel & cadmium from refinery waste, Int. j. sci. technol., 3(6);47.
Faedda, R., Puglisi, I., Sanzaro, V., Petrone, G. & Cacciola, S.O. (2012), Expression of genes of Trichoderma harzianum in response to the presence of cadmium in the substrate, Nat. Prod. Res., 26(24);2301-2308,
Fargasova, A. (2004). Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant, Soil Environ., 50(1);33-38.
Fu, K., Fan, L., Li, Y., Gao, S. & Chen, J. (2012), Tmac1, a transcription factor which regulated high affinity copper transport in Trichoderma reesei, Microbiol. Res., 167(9);536-543.
Gonzalez-Guerrero, M., Melville, L.H., Ferrol, N., Lott, J.N., Azcon-Aguilar, C. & Peterson, R.L. (2008), Ultrastructural localization of heavy metals in the extraradical mycelium & spores of the arbuscular mycorrhizal fungus Glomus intraradices, Can. J. Microbiol., 54(2);103-110.
Idris, M. O., Yaqoob, A. A., Ibrahim, M. N. M., Ahmad, A., & Alshammari, M. B. (2023). Introduction of adsorption techniques for heavy metals remediation. In Emerging Techniques for Treatment of Toxic Metals from Wastewater (pp. 1-18). Elsevier.
Iram, S., Shabbir, R., Zafar, H. & Javaid, M. (2015). Biosorption & bioaccumulation of copper & lead by heavy metal-resistant fungal isolates. Arabian J. Sci. Eng., 40(7);1867-1873.
Iskandar, N.L., Zainudin, N.A.I.M., & Tan, S.G. (2011). Tolerance & biosorption of copper (Cu) & lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Res. J. Environ. Sci., 23(5);824-830.
Kacprzak, M.J., Rosikon, K., Fijalkowski, K., & Grobelak, A. (2014), The effect of Trichoderma on heavy metal mobility & uptake by Miscanthus giganteus, Salix sp, Phalaris arundinacea, & Panicum virgatum, Appl. Environ. Soil Sci.
Kaur, S., Midha, T., Verma, H., Muduli, R. R., Dutta, O., Saini, O., ... & Dhiman, M. (2023). Bioremediation: A favorable perspective to eliminate heavy metals from polluted soil. In Metagenomics to Bioremediation (pp. 209-230). Academic Press.
Khan, R.A.A., Najeeb, S., Hussain, S., Xie, B., & Li, Y. (2020). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8(6);817.
Kumar, R., Bhatia, D., Singh, R., Rani, S., & Bishnoi, N. R., (2011), Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column, Int. Biodeterior. Biodegrad., 65(8);1133-1139.
Kumar, Y.P., King, P. & Prasad, V.S.R.K. (2006). Equilibrium & kinetic studies for the biosorption system of copper (II) ion from aqueous solution using Tectona grandis Lf leaves powder. J. Hazard. Mater., 137(2);1211-1217.
Kumara, R.R., Leeb, J.T. & Chob, J.Y. (2012), Toxic cadmium ions removal by isolated fungal strain from e-waste recycling facility, J. Environ. Health Sci. Eng., 23(19);8745.
Lin, H., Wang, Z., Liu, C., & Dong, Y. (2022). Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosphere, 305;135457.
Liu, S.H., Zeng, G.M., Niu, Q.Y., Liu, Y., Zhou, L., Jiang, L.H., Tan, X.F., Xu, P., Zhang, C. & Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs & heavy metals by bacteria & fungi: A mini review. Bioresour. Technol., 224;25-33.
Malkoc, S., Kurt, H., Ozbayer, C. & Yagci, E. (2021). Mycoremediation of Trichoderma harzianum & Penicillium chrysogenum to Pb Exposure: Effect on Metal Bioaccumulation, Oxidative Stress & Antioxidant System. CRPASE, 7(2);1-4.
Mohammadi, A.A., Yousefi, M., Soltani, J., Ahangar, A.G. & Javan, S. (2018). Using the combined model of gamma test & neuro-fuzzy system for modeling & estimating lead bonds in reservoir sediments. ESPR, 25(30);30315-30324.
Mohsenzadeh, F. & Shahrokhi, F. (2014). Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J. Environ. Health Sci. Eng., 12(1);1-7.
Mohsenzadeh, F., Chehregani Rad, A. & Akbari, M. (2012), Evaluation of oil removal efficiency & enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils, Iran. J. Environ. Health Sci. Eng., 9(1);1-8.
Mohsenzadeh, F., Nasseri, S., Mesdaghinia, A., Nabizadeh, R., Zafari, D., Khodakaramian, G. & Chehregani, A. (2010), Phytoremediation of petroleum-polluted soils: Application of Polygonum aviculare & its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils, Ecotoxicol. Environ. Saf., 73(4);613-619.
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T.V.M. (2010), Heavy metals, occurrence & toxicity for plants: a review, Environ. Chem. Lett., 8(3);199-216.
Puglisi, I., Faedda, R., Sanzaro, V., Piero, A.R.L., Petrone,G. & Cacciola, S.O. (2012), Identification of differentially expressed genes in response to mercury I & II stress in Trichoderma harzianum, Gene., 506(2);325-330.
Rao, M.A., Scelza, R., Scotti, R. & Gianfreda, L. (2010). Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr., 10(3);333-353.
Sahu, A., Mandal, A., Thakur, J., Manna, M.C. & Rao, A.S. (2012). Exploring bioaccumulation efficacy of Trichoderma viride: an alternative bioremediation of cadmium & lead. Natl. Acad. Sci. Lett. (India), 35(4);299-302.
Selen, V. Özer, D. & Özer, A. (2014). A study on the removal of Cr (VI) ions by sesame (Sesamum indicum) stems dehydrated with sulfuric acid. Arabian J. Sci. Eng., 39(8);5895-5904.
Sharma, S.S., Dietz, K.J. & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell Environ., 39(5);1112-1126.
Shi, C., He, H., Xia, Z., Gan, H., Xue, Q., Cui, Z. & Chen, J. (2022). Heavy metals & Pb isotopes in a marine sediment core record environmental changes & anthropogenic activities in the Pearl River Delta over a century. Sci. Total Environ., 814;151934.
Shoaib, A., Naureen, A., Tanveer, F. & Aslam, N. (2012), Removal of Ni (II) Ions from Substrate using Filamentous Fungi, Int. J. Agric. Biol., 14(5).
Shokri, S., Abdoli, N., Sadighara, P., Mahvi, A.H., Esrafili, A., Gholami, M., Jannat, B. & Yousefi, M. (2022). Risk assessment of heavy metals consumption through onion on human health in Iran. Food Chemistry.,14;100283.
Siddiquee, S., Aishah, S.N., Azad, S.A., Shafawati, S.N. & Naher, L. (2013). Tolerance & biosorption capacity of Zn2+, Pb2+, Ni 3+ & Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride & T. virens), SCIRP.,4(4);1-14
Singh, G., Nema, R., Khare, S., Singh, D., Jain, P., Pradhan, A., Gupta, A. & Naidu, S. (2012), Tolerance & biodegradation capacity of Trichoderma viride with special reference to heavy metals (Cr, Cd), Indo Am. J. Pharm. Res., 2(10);1007-1014.
Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M.N.V. (2013), Heavy metal-induced oxidative damage, defense reactions, & detoxification mechanisms in plants, Acta Physiol. Plant., 35(4);985-999.
Teng, Y., Luo, Y., Ma, W., Zhu, L., Ren, W., Luo, Y., Christie, P. & Li, Z. (2015), Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola & associated soil microbial activities, Front. Plant Sci., 9;220.
Tripathi, P., Singh, P.C., Mishra, A., Chauhan, P.S., Dwivedi, S., Bais, R.T. & Tripathi, R.D. (2013), Trichoderma: a potential bioremediator for environmental clean up, Clean Technol. Environ. Policy., 15(4);541-550.
Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens & stimulation of plant growth. Int. J. Mol. Sci., 23(4), 2329.
Valix, M. & Loon, L.O. (2003). Adaptive tolerance behaviour of fungi in heavy metals. Miner. Eng., 16(3);193-198.
Verena, S.S., Alfredo, H.E., Enrique, M. & Susanne, Z. (2011). Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol., 9(10).
Wang, B. & Wang, K. (2013). Removal of copper from acid wastewater of bioleaching by adsorption onto ramie residue & uptake by Trichoderma viride. Bioresour. Technol., 136;244-250.
Xu, P., Zeng, G., Huang, D., Liu, L., Zhao, M., Lai, C., Li, N., Wei, Z., Huang, C. & Zhang, C. (2016), Metal bioaccumulation, oxidative stress & antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure, Ecol. Eng., 87;150-156.
Yaashikaa, P.R., Kumar, P.S., Jeevanantham, S. & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification & accumulation in plants. Environ. Pollut., 119035.
Yadav, S.K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione & phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot., 76(2);167-179.
Yang, X., Feng, Y., He, Z. & Stoffella, P.J. (2005). Molecular mechanisms of heavy metal hyperaccumulation & phytoremediation. J. Trace Elem. Med. Biol., 18(4);339-353.
Yazdani, M., Yap, C.K., Abdullah, F. & Tan, S.G. (2010). An in vitro study on the adsorption, absorption & uptake capacity of Zn by the bioremediator Trichoderma atroviride. Environ. Asia., 3(1);53-59.
Zhang, T., Tang, J., Sun, J., Yu, C., Liu, Z. & Chen, J. (2015), Hex1-related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos, Biotechnol. Lett., 37(7);1421-1429.
Zin, N.A. & Badaluddin, N.A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci., 65(2);168-178.