Abdulridha, M. A., Salman, M. M., & Banyhussan, Q. S. (2020). Prediction the Strength of Fibered Reinforced Concrete Pavement Using Response Surface Methodology: Parametric Study. {IOP} Conference Series: Materials Science & Engineering, 881, 12180. https://doi.org/10.1088/1757-899x/881/1/012180
ACI 363R. (2010). Report on High-Strength Concrete. American Concrete Institute. Farmington Hills, USA.
Aghayan, I., & Khafajeh, R. (2019). Recycling of PET in asphalt concrete. In Use of Recycled Plastics in Eco-efficient Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102676-2.00012-8
Ahdal, A. Q., Amrani, M. A., Ghaleb, A. A. A., Abadel, A. A., Alghamdi, H., Alamri, M., Wasim, M., & Shameeri, M. (2022). Mechanical performance & feasibility analysis of green concrete prepared with local natural zeolite & waste PET plastic fibers as cement replacements. Case Studies in Construction Materials, 17, e01256. https://doi.org/10.1016/j.cscm.2022.e01256
Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties & impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021. https://https://doi.org/10.1016/j.compstruct.2019.111021
Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental & economic benefits of steel, glass, & polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437. /https://doi.org/10.1016/j.coco.2020.100437
Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research & Technology, 9(3), 4631–4643. https://doi.org/10.1016/j.jmrt.2020.02.090
AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, & mechanical properties & pavement design: A review. Journal of Cleaner Production, 288, 125095. https://doi.org/10.1016/j.jclepro.2020.125095
ASTM C143. (2012). Método de ensayo normalizado para asentamiento de concreto de cemento hidráulico. American Society for Testing & Materials (ASTM).
ASTM C33. (2003). Standard Specification for Concrete Aggregates. American Society for Testing & Materials (ASTM).
ASTM C39. (2018). Método de ensayo normalizado para resistencia a la compresión de especímenes cilíndricos de concreto. American Society for Testing & Materials (ASTM).
ASTM C595. (2020). Standard Specification for Blended Hydraulic Cements. American Society for Testing & Materials (ASTM).
ASTM C78. (2002). Standard test method for flexural strength of concrete (using simple beam with third–point loading). American Society for Testing & Materials (ASTM).
Azhdarpour, A. M., Nikoudel, M. R., & Taheri, M. (2016). The effect of using polyethylene terephthalate particles on physical & strength-related properties of concrete; a laboratory evaluation. Construction & Building Materials, 109, 55–62. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.01.056
Bozyigit, I., Bulbul, F., Alp, C., & Altun, S. (2021). Effect of randomly distributed pet bottle strips on mechanical properties of cement stabilized kaolin clay. Engineering Science & Technology, an International Journal, 24(5), 1090–1101. https://doi.org/10.1016/j.jestch.2021.02.012
Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste & PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93. https://doi.org/10.1016/j.wasman.2018.05.035
Chan, R., Santana, M. A., Oda, A. M., Paniguel, R. C., Vieira, L. B., Figueiredo, A. D., & Galobardes, I. (2019). Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. Journal of Cleaner Production, 218, 183–191. https://doi.org/10.1016/j.jclepro.2019.01.221
Christ, R., Pacheco, F., Ehrenbring, H., Quinino, U., Mancio, M., Muñoz, Y., & Tutikian, B. (2019). Study of mechanical behavior of ultra - high performance concrete ( UHPC ) reinforced with hybrid fibers & with reduced cement consumption. Revista Ingenieria de Construccion, 34(2), 159–168. https://doi.org/10.4067/S0718-50732019000200159
Comité ACI 211. (1991). Práctica estándar para seleccionar proporciones para concreto normal, pesado y masivo. Instituto Americano del Concreto, Farmington Hills,USA.
Cui, X., Liu, G., Wang, C., & Qi, Y. (2019). Effects of PET Fibers on Pumpability, Shootability, & Mechanical Properties of Wet-Mix Shotcrete. Advances in Civil Engineering, 2019, 2756489. https://doi.org/10.1155/2019/2756489
Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical & mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, e00482. https://doi.org/10.1016/j.cscm.2020.e00482
Fadhil, S., & Yaseen, M. (2015). The Production of Economical Precast Concrete Panels Reinforced by Waste Plastic Fibers. American Journal of Civil Engineering & Architecture, 3, 80–85. https://doi.org/10.12691/ajcea-3-3-4
Farfán, M., & Leonardo, E. (2018). Caucho reciclado en la resistencia a la compresión y flexión de concreto modificado con aditivo plastificante. Revista Ingeniería de Construcción, 33(3), 241–250. https://doi.org/10.4067/s0718-50732018000300241
Fioriti, C., Segantini, R., Pinheiro, J., Akasaki, J., & Spósito, F. (2020). Bloques de mampostería de hormigón liviano fabricados con caucho de neumáticos y metacaolín. Revista Ingeniería de Construcción, 35(3), 295–307. https://doi.org/10.4067/s0718-50732020000300295
Foti, D. (2019). Recycled waste PET for sustainable fiber-reinforced concrete. In F. Pacheco-Torgal, J. Khatib, F. Colangelo, & R. Tuladhar (Eds.), Use of Recycled Plastics in Eco-efficient Concrete (pp. 387–410). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102676-2.00018-9
Hameed, A. M., & Fatah, B. A. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38. https://doi.org/10.1016/j.egypro.2018.11.160
Hao, H., Bi, K., Chen, W., Pham, T. M., & Li, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, & smart civil engineering structures. Engineering Structures, 277, 115477. https://doi.org/10.1016/j.engstruct.2022.115477
Hassouna, F. M. A., & Jung, Y. W. (2020). Developing a Higher Performance & Less Thickness Concrete Pavement: Using a Nonconventional Concrete Mixture. Advances in Civil Engineering, 2020, 8822994. https://doi.org/10.1155/2020/8822994
Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete & design thickness of pavement with different types of fiber-reinforcements (steel, glass, & polypropylene). Case Studies in Construction Materials, 13, e00429. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00429
Islam, M. J., Meherier, M. S., & Islam, A. K. (2016). Effects of waste PET as coarse aggregate on the fresh & harden properties of concrete. Construction & Building Materials, 125, 946–951. https://doi.org/10.1016/j.conbuildmat.2016.08.128
Khatab, H. R., Mohammed, S. J., & Hameed, L. A. (2019). Mechanical Properties of Concrete Contain Waste Fibers of Plastic Straps. {IOP} Conference Series: Materials Science & Engineering, 557, 12059. https://doi.org/10.1088/1757-899x/557/1/012059
Macedo, A., & Lorenzetti, A. (2021). Behavior analysis of high strength concrete containing macro-polymeric fibers based on workability & mechanical properties. Revista Ingeniería de Construcción, 36(2), 142–156. http://dx.doi.org/10.4067/S0718-50732021000200142
Małek, M., Jackowski, M., Łasica, W., & Kadela, M. (2020). Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement. Materials, 13(8). https://doi.org/10.3390/ma13081827
Martínez-Soto, I. E., & Mendoza-Escobedo, C. J. (2006). Comportamiento mecánico de concreto fabricado con agregados reciclados. Ingeniería Investigación y Tecnología, 7(3), 151–164. https://doi.org/10.22201/fi.25940732e.2006.07n3.012
Meza de Luna, A., & Shaikh, F. U. A. (2020). Anisotropy & bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction & Building Materials, 265, 120331. https://doi.org/10.1016/j.conbuildmat.2020.120331
Mohammed, A. A., & Rahim, A. A. (2020). Experimental behavior & analysis of high strength concrete beams reinforced with PET waste fiber. Construction & Building Materials, 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350
Mohseni, E., Kazemi, M. J., Koushkbaghi, M., Zehtab, B., & Behforouz, B. (2019). Evaluation of mechanical & durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash & nano-alumina. Construction & Building Materials, 209, 532–540. https://doi.org/10.1016/j.conbuildmat.2019.03.067
Ojeda, J. P., & Mercante, I. T. (2021). Reciclaje de residuos plásticos para la producción de agregados livianos. Revista Internacional de Contaminación Ambiental, 37, 489–499. https://doi.org/10.20937/rica.54081
Olarte, S. (2022). Study of the mechanical behavior of hydraulic concrete: Addition of fibers & microparticles from plastic bottles. Revista Ingeniería de Construcción, 37(3), 435–443. https://doi.org/10.7764/ric.00045.21
Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete – a review. Journal of Cleaner Production, 112, 473–482. https://doi.org/10.1016/j.jclepro.2015.08.042
Shubbar, S. D., & Al-Shadeedi, A. S. (2017). Utilization of waste plastic bottles as fine aggregate in concrete. Kufa Journal of Engineering, 8(2), 132–146. https://www.iasj.net/iasj/download/3e4ebf31139fc017
Subramani, T., & Rahman, A. F. (2017). An Experimental Study On The Properties Of Pet Fibre Reinforced Concrete. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 6(3), 58–66. https://www.ijaiem.org/Volume6Issue3/IJAIEM-2017-03-14-18.pdf
Thomas, L. M., & Moosvi, S. A. (2020). Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Materials Today: Proceedings, 32, 632–637. https://doi.org/10.1016/j.matpr.2020.03.025
Torres, D. A., Bastidas, J. G., & Ruge, J. C. (2018). Reinforced Concrete with Synthetic Fibers (PET+PP) for Rigid Pavement Structures. 2018 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–5. https://doi.org/10.1109/CONIITI.2018.8587056
Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction & Building Materials, 93, 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105
Zhao, Z., Xiao, F., & Amirkhanian, S. (2020). Recent applications of waste solid materials in pavement engineering. Waste Management, 108, 78–105. https://doi.org/10.1016/j.wasman.2020.04.024