Response Surface Methodology for Adsorption of Humic Acid by Polyetheretherketone/ Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles from Industrial Wastewater

Document Type : Original Research Paper

Author

Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.

Abstract

The applicability of Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles synthesized for eliminating humic acid rapidly from industrial wastewater. Identical techniques, including BET, FTIR, XRD, and SEM have been utilized to characterize this novel material. Also, the impacts of variables including initial humic acids (HAs) concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4) came under scrutiny using central composite design (CCD) under response surface methodology (RSM). The values of 10 mgL-1, 6.0, 0.025 g, and 5.0 min were investigated through batch experiments, considered as the ideal values for humic acids (HAs) concentration, pH, adsorbent dosage, and contact time, respectively. Adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model and pseudo-second-order kinetics (R2: 0.999) with maximum adsorption capacity (102.0 mgg-1), respectively.  The overall results confirmed that Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles could be a promising adsorbent material for humic acids (HAs) removal from industrial wastewater. 

Keywords

Main Subjects


Adlnasab, L., Djafarzadeh, N. & Maghsodi, A. (2020). A new magnetic bio-sorbent for arsenate removal from the contaminated water: Characterization, isotherms, & kinetics. Environ. Health Eng. Manage., J 7; 49-58. 
Ahmad, P., Alyemeni, M.N., Al-Huqail, A.A., Alqahtani, M.A., Wijaya, L., Ashraf, Mu., Kaya, C. & Bajguz, A. (2020). Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as & Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle & Glyoxalase System. Plants., 9(7); 825. doi: 10.3390/plants9070825. 
Al-Arjan, W.S.h. (2022). Zinc Oxide Nanoparticles & Their Application in Adsorption of Toxic Dye from Aqueous Solution. Polymers., 14; 3086. https://doi.org/10.3390/polym14153086. 
Azizi, N., Arzani, M., Mahdavi, H.R. & Mohammadi, T. (2017). Synthesis & characterization of poly (ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean J. Chem. Eng., 34(9); 2459-2470. 
Bougdah, N., Messikh, N., Bousba, S., Magri, P., Djazi, F. & Zaghdoudi, R. (2017). Adsorption of humic acid from aqueous solution on Different Modified Bentonites. J. Chem. Eng. Trans., 60; 223-228.
Bousba, S., Bougdah, N., Messikh, N. & Magri, P. (2018). Adsorption Removal of Humic Acid from Water Using a Modified Algerian Bentonite. J. Phys. Chem. Res., 6; 613-625. 
Chen, X., Xu, Y., Fan, M., Chen, Y. & Shen, S. (2019). The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol in bioelectrochemical system. J. Environ. Manage., 235; 350-356.
Chin, A.H. & Yeap, S.P. (2018). Assessing the Role of Common Salt Valency & Concentration on Humic Acid & Alginate Removal from Synthetic Pond Water. J. Prog. Energy Environ., 6; 33-41.
Dawood, M.G., Abdel-Baky, Y.R., El-Awadi, M.E.S. & Bakhoum, G.S. (2019). Enhancement quality &  quantity  of  faba  bean  plants  grown  under  sandy  soil  conditions  by  nicotinamide  & /or humic acid application. J. Front. Plant Sci., 11; 28-36. 
Derakhshani, E. & Naghizadeh, A. (2018). Optimization of humic acid removal by adsorption onto bentonite & montmorillonite nanoparticles. J. Mol. Liq., 259; 76-81.
Ebrahimi, M., Bagheri, S., Maleki Taleghani, M. & Ghorabani, M. (2019). Humic acids elimination from aqueous media utilizing derived activated carbon from raw maize tassel on equilibrium, thermodynamic & kinetics. Desal. Water Treat., 160; 250-262.
Einolghozati, Sh., Pournamdari, E., Choobkar, N. & Marahel, F. (2022). Response Surface Methodology for Removal of Methyl Violet Dye Using Albizia Stem Bark Lebbeck Modified by Fe2(MoO4)3 Nanocomposite from Aqueous Solutions & Assessment Relative Error by Neural Network Model. Desal. Water Treat., 278; 195-208. 
Eren, E., Sarihan, A., Eren, B., Gumus, H. & Kocak, F.O. (2015). Preparation, characterization & performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. J. Membre. Sci., 475; 1-8.
Ghazali, A.A., Marahel, F. & Mombeni Goodajdar, B. (2021). Synthesized CM-β-CD-Fe3O4NPs: As an Environmental Friendly & Effective Adsorbent for Elimination of Boron from Aqueous Solutions. Int. J. Environ. Anal. Chem., 101(6); 1-19. https://doi.org/10.1080/03067319.2021.1953492. 
Gomri, F., Finqueneisel, G., Zimny, T., Korili, S.A., Gil, A. & Boutahala, M. (2018). Adsorption of Rhodamine 6G & humic acids on composite bentonite–alginate in single & binary systems. J. Appl. Water Sci., 8; 156-166.
Hasani, G., Daraei, H., Dhahrnoradi, B., Gharibi, F., Maleki, A., Yetilmersoy, K. & Mc kay, G. (2018). A novel ANN approach for modeling of alternation Pulse current electrocogolation-flotation (APC-ECF) Process: Humic acid removal from aqueous media. J. Proc. Safety Environ. Prot., 117; 111-124.
Hasani, G., Maleki, A., Daraei, H., Ghanbari, R., Safari, M., McKay, G., Yetilmezsoye, K., Ilhane, F. & Marzban, N. (2019). A  comparative  optimization  &  performance  analysis  of  four different  electrocoagulation-flotation  processes  for  humic  acid removal  from  aqueous  solutions. J. Proc. Safety Environ. Prot., 121; 103-117.
Jazebizadeh, M.H. & Khazraei, S. (2017). Investigation of Methane & Carbon Dioxide Gases Permeability through PEBAX/PEG/ZnO Nanoparticle Mixed Matrix Membrane. Silicon., 9; 775-784.  
Jemeljanova, M., Ozola, R. & Klavins, M. (2019). Physical-chemical properties & possible applications of clay minerals & humic acid composite materials. J. Agronomy Res., 17; 1023-1032. 
Jin, P., Song, J., Yang, L., Jin, X. & Wang, X.C. (2018). Selective binding behavior of humic acid removal by aluminum coagulation. J. Environ. Pollut., 233; 290-298. 
Karthik Chandan, A., Neha Mallika, G. & Bala Narsaiah, T. (2022). A green approach to arsenic removal using ZnO nanoparticles synthesized from Acacia Catechu leaf extract. J. Mater .Today., 9; 1-14. https://doi.org/10.1016/j.matpr.2022.06.199. 
Lin, K.Y.A. & Chang, H.A. (2015). Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8 (ZIF-8). J. Water Air. Soil. Pollut., 226; 2280-2287.
Li, Z., Huang, Y., Wang, H., Wang, D., Wang, X. & Han, F. (2017). Three-dimensional hierarchical structures of ZnO nanorods as a structure adsorbent for water treatment. J. Mater. Sci. Technol., 33(8); 864-868. 
Lu, Y., Hu, S., Wang, Z., Ding, Y., Lu, G., Lin, Z., Dang, Z. & Shi, Z. (2019). errihydrite transformation under the impact of humic acid & Pb: kinetics, nano-scale mechanisms, & implications for C & Pb dynamics. J. Environ. Sci. Nano., 6; 747-762.
Mamba, B.B., Krause, R.W., Malefetse, T.J., Sithole, S.P. & Nkambule, T.I. (2009). Humic acid as a model for natural organic matter (NOM) in the removal of odorants from water by cyclodextrin polyurethanes. J. Water Soil. Air., 35; 117-120.
Masoudzadeh, M. & Karachi, N.  (2018). Enhanced removal of humic acids (HAs) from aqueous solutions using MWCNTs modified by N-(3-nitro-benzylidene)-N-trimethoxysilylpropyl-ethane-1,2-diamine on Equilibrium, thermodynamic & kinetics. J. Phys. Theory. Chem., 14(3); 259‑270. 
Mehrparvar, A., Rahimpour, A. & Jahanshahi, M. (2014). Modified ultrafiltration membranes for humic acid removal. J. Taiwan Institute Chem. Eng., 45; 275-82.
Mombeni Goodajdar, B., Marahel, F., Niknam, L., Pournamdari, E. & Mousavi, E. (2021). Ultrasonic Assisted & Neural Network Model for Adsorption of of humic acid (HAs) by Synthesized CM-β-CD-Fe3O4NPs from Aqueous Solutions. Int. J. Environ. Anal. Chem., 101(7); 1-19. https://doi.org/10.1080/03067319.2021.1940159.
Mostafa, M.H., Elsawy, M.A., Darwish, M.S., Hussein, L.I. & Abdaleem, A.H. (2020). Microwave-Assisted preparation of Chitosan/ZnO nanocomposite & its application in dye removal. J. Mater. Chem. Phys., 248; 122914. https://doi.org/10.1016/j.matchemphys.2020.122914.
Naghizadeh, A., Nasseri, S., Mahvi, A.H., Nabizadeh, R. & Kalantary, R.R. (2015). Fenton regeneration of humic acid-spent carbon nanotubes. Desal. Water Treat., 54; 2490-2495.
Naghizadeh, A., Shahabi, H., Ghasemi, F. & Zarei, A. (2016). Synthesis of walnut shell modified with titanium dioxide & zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions. J. Water Health., 14(6); 989-997.
Naz, A., Kausar, A., Siddiq, M. & Choudhary, M.A. (2016). Comparative review on structure, properties, fabrication techniques, & relevance of polymer nanocomposites reinforced with carbon nanotube & graphite fillers. J. Polym. Plast. Technol. Eng., 55; 171-198.
Niknam, E., Babaei, A.A. & Ansari, A. (2017). Removal of trihalomethane precursors from water using activated carbon obtained from oak wood residue: kinetic & isotherm investigation of adsorption process. Desal. Water Treat., 92; 116-127.
Peeva, P.D., Palupi, A.E. & Ulbricht, M. (2011). Ultrafiltration of humic acid solutions through unmodified & surface functionalized low-fouling polyethersulfone membranes-Effects of feed properties, molecular weight cut-off & membrane chemistry on fouling behavior & cleanability. J. Sep. Purif. Technol., 81; 124-133.
Rahimi, A., Kiralan, M. & Ahmadi, F. (2020). Effect  of  Humic  Acid  Application  on  Qualitative  Parameters  of  Sugar  Beet  Cv. Shirin, Middle East. J. Agric. Res., 9; 121-129.
Rahmani Piani, M., Abrishamkar, M., Mombini Godajdar, B. & Hossieni, M. (2022). Removal of Humic Acids (HAs) in Drinking Water by Adsorption onto Polysulfone/Fe2O3 Mixed Matrix Membrane: Study kinetics & Isotherm Analysis. J. Appl. Chem. Res., 16(1); 8-29. 
Rahmani Piani, M., Abrishamkar, M., Mombini Godajdar, B. & Hossieni, M. (2021). Trihalomethanes (THMs) removal from aqueous solutions using environmental friendly & effective adsorbent onto Mespilus germanica modified by Fe2 (MoO4)3 nanocomposite on equilibrium, thermodynamic, & kinetics. Desal. Water Treat., 223; 288-302. 
Rasuli, L. & Mahvi, A.H. (2016). Removal of humic acid from aqueous solution using MgO nanoparticles. J. Water Chem. Technol., 38,; 21-27. 
Rivas, B.L., Pereira, E.D., Palencia, M. & Sanchez, J. (2011). Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. J. Prog. Polym. Sci., 36; 294-322. 
Sharafi, K., Pirsaheb, M., Gupta, V.K., Agarwal, Sh., Moradi, M., Vasseghian, Y. & Dragoi, E.N. (2019). Phenol adsorption on scoria stone as adsorbent-Application of response surface method & artificial neural networks. J. Mol. Liq., 274(15); 699-714. 
Shiyan, L.N., Machekhina, K.I. & Gryaznova, E.N. (2016). Study the properties of activated carbon & oxyhydroxide aluminum as sorbents for removal humic substances from natural waters. IOP Conference Series. J. Mater. Sci. Eng., 110; 12097-12107.
Tao, Q., Xu, Z., Wang, J., Liu, F., Wan, H. & Zheng, S. (2010). Adsorption of humic acid to aminopropyl functionalized SBA‑15. J. Microporous. Mater., 131; 177‑185.
Teow, Y.H., Ahmad, A.L., Lim, J.K. & Ooi, B.S. (2013). Studies on the surface properties of mixed-matrix membrane & its antifouling properties for humic acid removal. J. Appl. Polym. Sci., 128; 3184-3192. 
Xiong, Y., Tong, Q., Shan, W., Xing, Z., Wang, Y., Wen, S. & Lou, Z. (2017). Arsenic transformation & adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Appl. Surf. Sci., 416; 618-627. 
Yousaf, A., Farrukh, A., Oluz, Z., Tuncel, E., Duran, H., Doğan, S.Y., Tekinay, T.,
Rehman, H. & Yameen, B. (2014). UV-light assisted single step route to functional PEEK
surfaces. React. Funct. Polym., 83; 70-75.
Zhang, R., Wen, K. & Han, R. (2022). Effective removal of phosphate from solution by iron-doped chitosan/polyvinyl alcohol composite membrane. Desal. Water Treat., 267; 98-107. 
Zhang, W.,  Emamy, H.,  Betancourt, P., Vargas-Lara, F. & Dougla, J.F. (2019). The interfacial zone in thin polymer films & around nanoparticles in polymer nanocomposites. J. Chem. Phys., 151; 124705-1247715.