Organic Pollutants Removal from Olive Mill Wastewater using a new Ecosystem Treatment

Document Type : Original Research Paper

Authors

Geo-biodiversity and Natural Patrimony laboratory GEOPAC, Research Center Scientific Institute, Mohammed V University in Rabat, Morocco

Abstract

Olive mill wastewater is the main by-product derived from olive mills using the three-phase extraction process,displaying a serious environmental risk due to its notable content in organics and phenolics Olive oil production, an agro-industrial of vital economic particularly in Mediterranean countries, is unfortunately associated with the generation of large quantities of OMW (Olive Mill Wastewater) and solid wastes. The OMW is considered a major environmental problem, it is a powerful pollutant rejected in nature without any prior treatment. This research work aims to study the treatment of OMW by a new ecological and economic system, which consists of the use of the following components: gravel, sawdust, soil, activated carbon, bamboo, and the valorization of the solid residues. HPLC analysis showed that hydroxytyrosol is the most abundant biophenol. Many other biophenols were identified (Tyrosol, gallic acid, and eleonic acid). The comparison between before and after filtration by the new system showed an essential degradation of phenolic compounds after treatment and found a new compound resulting from their degradation.

Keywords

Main Subjects


Abdelwahab, O., Amin, N.K. & El-Ashtoukhy, E.Z. (2009) . Electrochemical removal of phenol from oil refinery wastewater. Journal of hazardous materials, 163(2-3), pp.711-716.
Achak, M., Ouazzani, N. & Mandi, L. (2009). Treatment of modern olive mill effluent by infiltration-percolation on a sand filter. Traitement des margines d’une huilerie moderne par infiltration-percolation sur un filtre à sable, 22, pp.421-433.
Achak, M., Ouazzani, N. & Mandi, L. (2011). Élimination des polluants organiques des effluents de l’industrie oléicole par combinaison d’un filtre à sable et un lit planté. Revue des Sciences de l’Eau, 24(1), pp.35-51.
Adhoum, N. & Monser, L. (2004). Decolourization & removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chemical Engineering & Processing: Process Intensification, 43(10), pp.1281-1287.
Aggelis, G.; Ehaliotis, C.; Nerud, F.; Stoychev, I.; Lyberatos, G.; & Zervakis, G.(2002) Evaluation of white-rot fungi for detoxification & decolorization of effluents from the green olive debittering process. Appl. Microbiol. Biotechnol. 59, 353–360. 
Al Bsoul, A., Hailat, M., Abdelhay, A., Tawalbeh, M., Jum’h, I. & Bani-Melhem, K. (2019). Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles. Science of The Total Environment, 688, pp.1327-1334.
Artajo, L.S., Romero, M.P., Morelló, J.R. & Motilva, M.J. (2006). Enrichment of refined olive oil with phenolic compounds: evaluation of their antioxidant activity & their effect on the bitter index. Journal of Agricultural & Food Chemistry, 54(16), pp.6079-6088.
De Marco, E., Savarese, M., Paduano, A. & Sacchi, R. (2007). Characterization & fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food chemistry, 104(2), pp.858-867.
El Ghadraoui, A., Ouazzani, N., Ahmali, A., El Mansour, T.E.H., Aziz, F., Hejjaj, A. & Mandi, L. (2020). Treatment of olive mill & municipal wastewater mixture by pilot scale vertical flow constructed wetland. Desalin Water Treat, 198, pp.126-139.
Gullon, P., Gullon, B., Astray, G., Carpena, M., Fraga-Corral, M., Prieto, M. A., & Simal-Gandara, J. (2020). Valorization of by-products from olive oil industry & added-value applications for innovative functional foods. Food Research International, 137, 109683.
Gutiérrez-Rosales, F., Rios, J. J., & Gomez-Rey, M. L. (2003). Main polyphenols in the bitter taste of virgin olive oil. Structural confirmation by on-line high-performance liquid chromatography electrospray ionization mass spectrometry. Journal of Agricultural & Food Chemistry, 51(20), 6021-6025.
Hodaifa, G., Gallardo, P.A.R., García, C.A., Kowalska, M. & Seyedsalehi, M. (2019). Chemical oxidation methods for treatment of real industrial olive oil mill wastewater. Journal of the Taiwan Institute of Chemical Engineers, 97, pp.247-254.
Iboukhoulef, H. (2014). Traitement des margines des huileries d’olive par les procédés d’oxydation avancée basé sur le système fenton-like (H2 O2/Cu) (Doctoral dissertation, Universite Mouloud Mammeri).
Inan, H.; Dimoglo, A.; ¸Sim¸sek, H.; & Karpuzcu, M. (2004). Olive oil mill wastewater treatment by means of electro-coagulation. Sep. Purif. Technol.36, 23–31.
Karaouzas, I., Skoulikidis, N.T., Giannakou, U., & Albanis, T.A. (2011). Spatial & temporal effects of olive mill wastewaters to stream macroinvertebrates & aquatic ecosystems status. Water Res. 45 (19), 6334–6346.
Khdair, A.I., Abu-Rumman, G. & Khdair, S.I. (2019). Pollution estimation from olive mills wastewater in Jordan. Heliyon, 5(8), p.e02386.
Kobya, M., Hiz, H., Senturk, E., Aydiner, C. & Demirbas, E. (2006) . Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination, 190(1-3), pp.201-211.
Komnitsas, K., Modis, K., Doula, M., Kavvadias, V., Sideri, D. & Zaharaki, D. (2016). Geostatistical estimation of risk for soil & water in the vicinity of olive mill wastewater disposal sites. Desalination & Water Treatment, 57(7), pp.2982-2995.
Lee, Z.S., Chin, S.Y., Lim, J.W., Witoon, T. & Cheng, C.K. (2019). Treatment technologies of palm oil mill effluent (POME) & olive mill wastewater (OMW): A brief review. Environmental technology & innovation, 15, p.100377.
Lissaneddine, A., Mandi, L., El Achaby, M., Mousset, E., Rene, E.R., Ouazzani, N., Pons, M.N. & Aziz, F. (2021). Performance & dynamic modeling of a continuously operated pomace olive packed bed for olive mill wastewater treatment & phenol recovery. Chemosphere, 280, p.130797.
Macheix (J.J.), Fleuriet (A.), Billo (J.A.). (1990)- Fruit phenolics. Boca Raton Florida : CRC Press Inc., 378 p.
Mastoras, P., Vakalis, S., Fountoulakis, M.S., Gatidou, G., Katsianou, P., Koulis, G., Thomaidis, N.S., Haralambopoulos, D. & Stasinakis, A.S.,(2022). Evaluation of the performance of a pilot-scale solar still for olive mill wastewater treatment. Journal of Cleaner Production, 365, p.132695.
Niazmand R, Jahani M, Sabbagh F, & Rezania S.(2020). Optimization of electrocoagulation conditions for the purification of table olive debittering wastewater using Water, 12(6), 1687.
Ntougias, S., Gaitis, F., Katsaris, P., Skoulika, S., Iliopoulos, N. & Zervakis, G.I. (2013). The effects of olives harvest period & production year on olive mill wastewater properties–Evaluation of Pleurotus strains as bioindicators of the effluent’s toxicity. Chemosphere, 92(4), pp.399-405.
Parinos, C.; Stalikas, C.; Giannopoulos, T.S.; & Pilidis, G.A.(2007) Chemical & physicochemical profile of wastewaters produced from the different stages of spanish-style green olives processing. J. Hazard. Mater. 145, 339–343.
Peralbo-Molina, A., Priego-Capote, F. & Luque de Castro, M.D.,( 2012). Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography–tandem mass spectrometry with a quadrupole–quadrupole-time-of-flight mass detector. Journal of Agricultural & Food Chemistry, 60(46), pp.11542-11550.
Podgornik, M., Bučar-Miklavčič, M., Levart, A., Salobir, J., Rezar, V. & Butinar, B. (2022). Chemical characteristics of two-phase olive-mill waste & evaluation of their direct soil application in humid Mediterranean regions. Agronomy, 12(7), p.1621.
Reheema, A.A., Yilmazb, N. & Elhagc, M. (2019). Phenolics decontamination of olive mill wastewater using onion solid by-products homogenate. Desalination & Water Treatment, 159, pp.32-39.
Solomakou, N. & Goula, A.M. (2021). Treatment of olive mill wastewater by adsorption of phenolic compounds. Reviews in Environmental Science & Bio/Technology, 20(3), pp.839-863.
Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S. & Galanakis, C.M. (2017). Olive oil production sector: Environmental effects & sustainability challenges. In Olive mill waste (pp. 1-28). Academic Press.
Vavouraki, A.I., Zakoura, M.V., Dareioti, M.A. & Kornaros, M. (2020). Biodegradation of Polyphenolic Compounds from Olive Mill Wastewaters (OMW) during Two-stage anaerobic Co-digestion of Agro-industrial mixtures. Waste & Biomass Valorization, 11, pp.5783-5791.
Yaakoubi, A., Chahlaoui, A., Elyachioui, M. & Chaouch, A. (2010). Traitement des margines à pH neutre et en conditions d’aérobie par la microflore du sol avant épandage. Bull. Soc. Pharm. Bordeaux, 149, pp.43-56.
Ying, X., Wang, R., Xu, J., Zhang, W., Li, H., Zhang, C. & Li, F. (2009). HPLC determination of eight polyphenols in the leaves of Crataegus pinnatifida Bge. var. major. Journal of chromatographic science, 47(3), pp.201-205.
Zghari, B., Benyoucef, F., & Boukir, A. (2018). Impact environnemental des margines sur les eaux d’oued oussefrou: caracterisation physico-chimique et evaluation par chromatographie gazeuse couplee a la spectrometrie de masse (CPG-SM) the environmental impact of olive mill wastewater in oussefrou. American Journal of Innovative Research & Applied Sciences, 2429, 5396.
Zirehpour, A., Jahanshahi, M. & Rahimpour, A. (2012). Unique membrane process integration for olive oil mill wastewater purification. Separation & Purification Technology, 96, pp.124-131.
Zirehpour, A., Rahimpour, A., Jahanshahi, M. & Peyravi, M. (2014). Mixed matrix membrane application for olive oil wastewater treatment: Process optimization based on Taguchi design method. Journal of environmental management, 132, pp.113-120.