Berge, N. D., Ro, K. S., Mao, J., Flora, J. R. V, Chappell, M. A., & Bae, S. (2011). Hydrothermal carbonization of municipal waste streams. Environmental Science & Technology, 45(13), 5696–5703.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. In Talanta (Vol. 76, Issue 5, pp. 965–977). https://doi.org/10.1016/j.talanta.2008.05.019
Fernandez, E. Posada, P. García-González, & J. Álvarez-Gallego. (2019). Assessment of hydrothermal carbonization as a pretreatment for anaerobic digestion of agroindustrial residues. Renewable Energy, 139, 1223-1230.
Hwang, I.-H., Aoyama, H., Matsuto, T., Nakagishi, T., & Matsuo, T. (2012). Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Management, 32(3), 410–416.
Ippolito, J. A., Laird, D. A., & Busscher, W. J. (2012). Environmental benefits of biochar. Journal of Environmental Quality, 41(4), 967–972.
Köchermann, J., Görsch, K., Wirth, B., Mühlenberg, J., & Klemm, M. (2018). Hydrothermal carbonization: Temperature influence on hydro-char & aqueous phase composition during process water recirculation. Journal of Environmental Chemical Engineering, 6(4), 5481–5487.
Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., & Kern, J. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes & applications of wet & dry pyrolysis. Biofuels, 2(1), 71–106.
Lin, Y., Ma, X., Peng, X., Hu, S., Yu, Z., & Fang, S. (2015). Effect of hydrothermal carbonization temperature on combustion behavior of hydro-char fuel from paper sludge. Applied Thermal Engineering, 91, 574–582.
Lu, X., Jordan, B., & Berge, N. D. (2012). Thermal conversion of municipal solid waste via hydrothermal carbonization : Comparison of carbonization products to products from current waste management techniques. Waste Management, 32(7), 1353–1365. https://doi.org/10.1016/j.wasman.2012.02.012
Luo, M., Dodd, A., West, H., Neogi, A., & Brogan, K. D. (2017). Esterified cellulose pulp compositions & related methods. Google Patents.
Nizamuddin, S., Ahmed, H., Gri, G. J., Mubarak, N. M., Bhutto, W., Abro, R., Ali, S., & Si, B. (2017). An overview of e ff ect of process parameters on hydrothermal carbonization of biomass. 73(December 2015), 1289–1299. https://doi.org/10.1016/j.rser.2016.12.122
Novotny, T. E., Lum, K., Smith, E., Wang, V., & Barnes, R. (2009). Cigarettes butts & the case for an environmental policy on hazardous cigarette waste. International Journal of Environmental Research & Public Health, 6(5), 1691–1705.
Ong, B. H. Y., Walmsley, T. G., Atkins, M. J., & Walmsley, M. R. W. (2018). Hydrothermal liquefaction of Radiata Pine with Kraft black liquor for integrated biofuel production. Journal of Cleaner Production, 199, 737–750.
Parsa, M., Jalilzadeh, H., Pazoki, M., Ghasemzadeh, R., & Abduli, M. (2018). Hydrothermal liquefaction of Gracilaria gracilis & Cladophora glomerata macro-algae for biocrude production. Bioresource Technology, 250, 26–34.
Pazoki M., Ghasemzade R., & Ziaee P. (2017). Simulation of municipal landfill leachate movement in soil by HYDRUS-1D model, Advances in Environmental Technology 3 (3), 177-184
Rahbari, H., Akram, A., Pazoki, M., & Aghbashlo, M. (2019). Bio-Oil Production from Sargassum Macroalgae: A Green & Healthy Source of Energy. Jundishapur Journal of Health Sciences, In Press.
Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable & Sustainable Energy Reviews, 51, 886–898.
Román, S., Libra, J., Berge, N., Sabio, E., Ro, K., Li, L., Ledesma, B., Álvarez, A., & Bae, S. (2018). Hydrothermal carbonization: Modeling, final properties design & applications: A review. Energies, 11(1), 216.
Sharifi, H., Zabihzadeh, S. M., & Ghorbani, M. (2018). The application of response surface methodology on the synthesis of conductive polyaniline/cellulosic fiber nanocomposites. Carbohydrate Polymers, 194, 384–394.
Slaughter, E., Gersberg, R. M., Watanabe, K., Rudolph, J., Stransky, C., & Novotny, T. E. (2011). Toxicity of cigarette butts, & their chemical components, to marine & freshwater fish. Tobacco Control, 20(Suppl 1), i25--i29. https://doi.org/10.1136/tc.2010.040170
Technology, S. (n.d.). Application of Hydrothermal Reactions to Biomass Conversion.
Ghasemzade R., & Pazoki M. (2017). Estimation & modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City), Pollution 3 (4), 689-700.
Xu, X., Zeng, G., Haung D., Fan, J., Li, M., Ki, L., Bai, Z., & Zhang, W. (2021). Hydrothermal carbonization of cigarette butts for hydro-char production: Kinetics, products, & potential applications. Waste Management, 120, 449-457.