Abdollahinejad, B., Pasalari, H., Jafari, A. J., Esrafili, A., & Farzadkia, M. (2020). Bioremediation of diesel & gasoline-contaminated soil by co-vermicomposting amended with activated sludge: diesel & gasoline degradation & kinetics. Environ. Pollut., 263 (Part A); 114584.
Adesodun, J. K., & Mbagwu, J. S. C. (2008). Biodegradation of waste-lubricating petroleum oil in a tropical tlfisol as mediated by animal droppings. Bioresource Technol., 99(13); 5659–5665.
Alvim, G. M., & Pontes, P. P. (2018). Aeration & sawdust application effects as structural material in the bioremediation of clayey acid soils contaminated with diesel oil. Int. Soil Water Conserv. Res., 6(3); 253–260.
Ani, K. A., Agu, C. M., Esonye, C., & Menkiti, M. C. (2021). Investigations on the characterizations, optimization & effectiveness of goat manure compost in crude oil biodegradation. Curr. Res. Green Sustain. Chem., 4; 100120.
Antón-Herrero, R., García-Delgado, C., Baena, N., Mayans, B., Delgado-Moreno, L., & Eymar, E. (2022). Assessment of different spent mushroom substrates to bioremediate soils contaminated with petroleum hydrocarbons. Appl. Sci., 12(15); 7720.
Aona, D., Yaning, L., & Jun, Q. (2017). Life cycle assessment of edible fungi residue compost-a case study of Beijing.Nature Environ. Pollut. Technol., 16(2); 643-646.
Asemoloye, M. D., Chukwuka, K. S., & Jonathan, S. G. (2020). Spent mushroom compost enhances plant response & phytoremediation of heavy metal polluted soil. J. Plant Nutrition Soil Sci., 183(4); 492–499.
Azadi, N., & Raiesi, F. (2021). Sugarcane bagasse biochar modulates metal & salinity stresses on microbial functions & enzyme activities in saline co-contaminated soils. Appl. Soil Ecol., 167; 104043.
Babaei, A. A., Safdari, F., Alavi, N., Bakhshoodeh, R., Motamedi, H., & Paydary, P. (2020). Co-composting of oil-based drilling cuttings by bagasse. Bioproc. biosyst. eng., 43(1); 1-12.
Biswas, B., Sarkar, B., Rusmin, R., & Naidu, R. (2017). Mild acid & alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14 C-tracer study. Environ. Pollut., 223; 255–265.
Bodor, A., Petrovszki, P., Kis, Á. E., Vincze, G. E., Laczi, K., Bounedjoum, N., Szilágyi, Á., Szalontai, B., Feigl, G., Kovács, K. L., Rákhely, G., & Perei, K. (2020). Intensification of ex situ bioremediation of soils polluted with used lubricant oils: a comparison of biostimulation & bioaugmentation with a special focus on the type & size of the inoculum. Int. J. Env. Res. Pub. Heal., 17(11); 4106.
Bremner, J.M. (1996). Nitrogen total, 1085–1122, in: Methods of soil analysis Part 3: Chemical methods. Madison, WI: Soil Science Society of American & American Society of Agronomy.
Bridson, E. Y., & Brecker, A. (1970). Design & formulation of microbial culture media. Meth. Microbiol., 3: 229–295.
Dadrasnia, A., & Ismail, S. B. (2015). Bio-enrichment of waste crude oil polluted soil: amended with Bacillus 139SI & organic waste. Int. J. Environ. Sci. Dev., 6(4); 241–245.
Estefan, G. (2013). Methods of soil, plant, & water analysis: A manual for the west Asia & North Africa region: Third Edition. International Center for Agricultural Research in the Dry Areas.
Etesami, H., & Beattie, G. A. (2018). Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol., 9; 148.
Feng, L., Jiang, X., Huang, Y., Wen, D., Fu, T., & Fu, R. (2021). Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium & sophorolipid. Environ. Pollut., 273; 116476.
Garousin, H., Pourbabaee, A. A., Alikhani, H. A., & Yazdanfar, N. (2021). A combinational strategy mitigated old-aged petroleum contaminants: ineffectiveness of biostimulation as a bioremediation technique. Front. Microbiol., 12; 642215.
Gee, G.W., & Bauder, J.W. (1986). Particle-size analysis, 383–411, in: Klute, A. (Ed.), Method of soil analysis, part 1. Madison, WI: American Society of Agronomy/Soil Science Society of America.
Gharibzadeh, F., Rezaei Kalantary, R., Nasseri, S., Esrafili, A., & Azari, A. (2016). Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Separ. Purif. Tec., 168; 248–256.
Gielnik, A., Pechaud, Y., Huguenot, D., Cébron, A., Esposito, G., & van Hullebusch, E. D. (2021). Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. J. Environ. Manage., 280; 1-8.
Gitipour, S., Hedayati, M., & Madadian, E. (2015). Soil washing for reduction of aromatic & aliphatic contaminants in soil. CLEAN – Soil, Air, Water, 43(10); 1419–1425.
Guzmán-López, O., Cuevas-Díaz, M. del C., Martínez Toledo, A., Contreras-Morales, M. E., Ruiz-Reyes, C. I., & Ortega Martínez, A. del C. (2021). Fenton-biostimulation sequential treatment of a petroleum-contaminated soil amended with oil palm bagasse (Elaeis Guineensis). Chem. Ecol., 37(6); 573–588.
Hamzah, A., Phan, C., Yong, P., & Mohd Ridzuan, N. H. (2014). Oil palm empty fruit bunch & sugarcane bagasse enhance the bioremediation of soil artificially polluted by crude oil. Soil Sediment Contam., 23(7); 751–762.
Hewelke, E., Szatyłowicz, J., Hewelke, P., Gnatowski, T., & Aghalarov, R. (2018). The impact of diesel oil pollution on the hydrophobicity & CO2 efflux of forest soils. Water, Air, & Soil Pollut., 229(2); 1–11.
Hoang, S. A., Sarkar, B., Seshadri, B., Lamb, D., Wijesekara, H., Vithanage, M., Liyanage, C., Kolivabandara, Pabasari A., Rinklebe, J., Lam, S. S, Vinu, A., Wang, H., Kirkham, M. B., & Bolan, N. S. (2021). Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. J. Hazard. Mater., 416; 125702.
Horel, A., Mortazavi, B., & Sobecky, P. A. (2015). Input of organic matter enhances degradation of weathered diesel fuel in sub-tropical sediments. Sci. Total Environ, 533; 82–90.
Huang, L., Ye, J., Jiang, K., Wang, Y., & Li, Y. (2021). Oil contamination drives the transformation of soil microbial communities: co-occurrence pattern, metabolic enzymes & culturable hydrocarbon-degrading bacteria. Ecotox. Environ. safe., 225; 112740.
Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, Mazhar, S., Gerhard, R., Thomas Gerhard, Z., & Yousaf, S. (2018). Combined application of biochar, compost, & bacterial consortia with Italian Ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ., & Exp. Bot., 153; 80–88.
Kalami, R & Pourbabaee, A. A. (2021). Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. Environ. monit. assess., 193(8); 517-537.
Korouzhdehi, B., Abbasi, A. R., Bahreini, M., Pourbabaee, A. A., & Moghadam, M. R. S. (2018). Isolation & recognition of keratinolytic bacteria strains based on their biochemical & molecular properties. J. Genet., 12(4); 525.
Kuyukina, M. S., & Ivshina, I. B. (2019). Bioremediation of contaminated environments using Rhodococcus. 231–270.
Levy-Booth, D. J., Fetherolf, M. M., Stewart, G. R., Liu, J., Eltis, L. D., & Mohn, W. W. (2019). Catabolism of alkylphenols in Rhodococcus via a meta-cleavage pathway associated with genomic Islands. Front. Microbiol., 1(AUG); 1862.
Lim, M. W., Lau, Ee V., & Poh, P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil — present works & future directions. Mar. Pollut. Bull., 109(1); 14–45.
Liu, J., Chen, S., Ding, J., Xiao, Y., Han, H., & Zhong, G. (2015). Sugarcane bagasse as support for immobilization of Bacillus Pumilus HZ-2 & its use in bioremediation of mesotrione-contaminated soils. Appl. Microbiol. Biotec., 99(24); 10839–10851.
Liu, X., Ge, W., Zhang, X., Chai, C., Wu, J., Xiang, D., & Chen, X. (2019). Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus Sp. LXC combined with humic acid & spent mushroom substrate. J. Hazard. Mater., 379; 120820.
Liu, Y., Lai, Q., Du, J., & Shao, Z. (2016). Bacillus Zhangzhouensis sp. Nov., & Bacillus Australimaris sp. Nov. Int. J. Syst. Evol. Microbiol., 66(3); 1193–1199.
Lladó, S., Covino, S., Solanas, A. M., Viñas, M., Petruccioli, M., & D’annibale, A. (2013). Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J. hazard. mater., 248–249(1); 407–414.
Lu, C., Hong, Y., Liu, J., Gao, Y., Ma, Z., Yang, B., Ling, W., & Waigi, M. G. (2019). A PAH-degrading bacterial community enriched with contaminated agricultural soil & its utility for microbial bioremediation. Environ. Pollut., 251; 773–782.
Martínez Álvarez, L. M., Lo Balbo, A., Mac Cormack, W. P., & Ruberto, L. A.M. (2015). Bioremediation of a petroleum hydrocarbon-contaminated antarctic soil: optimization of a biostimulation strategy using response-surface methodology (RSM). Cold Reg. Sci. Technol., 119; 61–67.
Mohammadi, F., Roedl, A., Abdoli, M. A., Amidpour, M., & Vahidi, H. (2020). Life cycle assessment (LCA) of the energetic use of bagasse in iranian sugar industry. Renew. Energ., 145; 1870–1882.
Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon & organic matter, 961–1010, in: Sparks, D. L. (Ed.), Methods of soil analysis Part 3: Chemical methods. Madison, WI: Soil Science Society of American & American Society of Agronomy.
Nikkhah, M., Pourbabaee, A. A., Shariati, S., & Shakiba, M. (2023). The saline rhizospheric soil of Sparganium Erectum L. plant: a new source of efficient bacteria for azo dye decolorization. Pollut., 9(1); 107-125.
Nwankwegu, A. S., & Onwosi, C. O. (2017). Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ. Technol. Innov., 7: 1–11.
Obieze, C. C., Chikere, C. B., Selvarajan, R., Adeleke, R., Ntushelo, K., & Akaranta, O. (2020). Functional attributes & response of bacterial communities to nature-based fertilization during hydrocarbon remediation. Int. Biodeterior. Biodegrad., 154: 105084.
Okerentugba, P.O., Orji, F.A., Ibiene, A.A., & Elemo, G.N. (2015). Spent mushroom compost for bioremediation of petroleum hydrocarbon polluted soil: a review. Global Adv. Res. J. Environ. Sci. Toxicol., 4(1); 001–007.
Olsen, S. R., & Sommers, L. E. (1982). Phosphorus, 403–430, in: Page, A. L. (Ed.), Methods of soil analysis Part 2: Chemical & microbiological properties. Madison, WI: Soil Science Society of American & American Society of Agronomy.
Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil & water contaminated with petroleum hydrocarbon: a review. Environ. Technol. Innov., 17: 100526.
Poi, G., Aburto-Medina, A., Mok, P. C., Ball, A. S., & Shahsavari, E. (2017). Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium. Ecol. Eng., 102; 64–71.
Pourbabaee, A. A., Shahriari, M. H., & Garousin, H. (2019). Biodegradation of phenanthrene as a model hydrocarbon: power display of a super-hydrophobic halotolerant enriched culture derived from a saline-sodic soil. Biotechnol. Rep., 24; e00388.
Ravanipour, M., Kalantary, R. R., Mohseni-Bandpi, A., Esrafili, A., Farzadkia, M., & Hashemi-Najafabadi, S. (2015). Experimental design approach to the optimization of PAHs bioremediation from artificially contaminated soil: application of variables screening development. J. Environ. Heal. Sci. Eng., 13(1); 1-10.
Rhoads, J.D. (1996). Electrical conductivity & total dissolved solids, 417–435, in: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., & Sumner, M. . (Eds.), Methods of soil analysis Part 3. Madison, WI: Soil Science Society of American & American Society of Agronomy.
Sadañoski, M. A., Tatarin, A. S., Barchuk, M. L., Gonzalez, M., Pegoraro, C. N., Fonseca, M. I., Levin, Laura N., & Villalba, L. L. (2020). Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments. Ecotox. Environ. Safe., 202; 110929.
Sarkar, J., Roy, A., Sar, P., & Kazy, S. K. (2020). Accelerated bioremediation of petroleum refinery sludge through biostimulation & bioaugmentation of native microbiome. Emerg. Technol. Environ. Biorem., 23–65.
Song, Y. F., Jing, X., Fleischmann, S., & Wilke, B. M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils & sediments. Chemosphere, 48(9); 993–1001.
Sparks, D. L. (1996). Methods of soil analysis: Part 3 Chemical methods (D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner, Eds.). Madison: the Soil Science Society of America, Inc., American Society of Agronomy, Inc.
Speight, J. G., & Arjoon, K. K. (2012). Bioremediation of petroleum & petroleum products. Hoboken, NJ, USA: John Wiley & Sons, Inc.
Sundberg, C., Smårs, S., & Jönsson, H. (2004). Low PH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technol., 95(2); 145–150.
Sutigoolabud, P., Senoo, K., Ongprasert, S., Mizuno, T., Mishima, T., Hisamatsu, M., & Obata, H. (2005). Decontamination of chlorate in longan plantation soils by bio-stimulation with molasses amendment. Soil Sci. Plant Nutrition, 51(4); 583–588.
Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th Ed.). Courier Companies, Inc.
Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilisers & organic manures. Fertiliser Development & Consultation Organisation.
Tao, K., Zhang, X., Chen, X., Liu, X., Hu, X., & Yuan, X. (2019). Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere, 222; 831–838.
Thomas, G.W. (1996). Soil pH & soil acidity, 475–490, in: Sparks, D. L. (Ed.), Methods of soil analysis Part 3: Chemical methods. Madison, WI: Soil Science Society of American & American Society of Agronomy.
Tremblay, J., Yergeau, E., Fortin, N., Cobanli, S., Elias, M., King, T. L., Lee, K., & Greer, C. W. (2017). Chemical dispersants enhance the activity of oil- & gas condensate-degrading marine bacteria. ISME J., 11(12); 2793–2808.
Udume, O. A., Abu, G. O., Stanley, H. O., Vincent-Akpu, I. F., Momoh, Y., & Eze, M. O. (2023). Biostimulation of petroleum-contaminated soil using organic & inorganic amendments. Plants, 12(3); 1-14.
Umor, N. A., Ismail, S., Abdullah, S., Huzaifah, M. H.R., Huzir, N. M., Mahmood, N. A.N., & Zahrim, A. Y. (2021). Zero waste management of spent mushroom compost. J. Mater. Cycles Waste Manag., 23(5); 1726–1736.
USDA (2019), FoodData Central. available at https://fdc.nal.usda.gov/fdc-app.html#/food-details/168820/nutrients [31 May 2021].
Visentin, C., DaSilvaTrentin, A., Braun, A., & Thomé, A. (2019). Application of life cycle assessment as a tool for evaluating the sustainability of contaminated sites remediation: a systematic & bibliographic analysis. Sci. Total Environ., 672; 893-905.
Wei, Y., Chen, J., Wang, Y., Meng, T., & Li, M. (2021). Bioremediation of the petroleum contaminated desert steppe soil with Rhodococcus Erythropolis KB1 & its effect on the bacterial communities of the soils. Geomicrobiol. J., 38(10); 842–849.
Wu, M., Ye, X., Chen, K., Li, W., Yuan, J., & Jiang, X. (2017). Bacterial community shift & hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ. Pollut., 223; 657–664.
Wu, M., Wu, J., Zhang, X., & Ye, X. (2019). Effect of bioaugmentation & biostimulation on hydrocarbon degradation & microbial community composition in petroleum-contaminated loessal soil. Chemosphere, 237; 124456.
Wu, T., Xie, W. J., Yi, Y. L., Li, X. B., Yang, H. J., & Wang, J. (2012). Surface activity of salt-tolerant Serratia Spp., & crude oil biodegradation in saline soil. Plant, Soil Environ., 58(9); 412–416.
Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H., & Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front. Microbiol., 9; 2885.
Yam, K. C., Geize, R. van der & Eltis, L. D. (2010). Catabolism of aromatic compounds & steroids by Rhodococcus: 133–169.
Yousefi, K., Mohebbi, A., & Pichtel, J. (2021). Biodegradation of weathered petroleum hydrocarbons using organic waste amendments. Appl. Environ. Soil Sci., 2021; 1-12.
Zeneli, A., Kastanaki, E., Simantiraki, F., & Gidarakos, E. (2019). Monitoring the biodegradation of TPH & PAHs in refinery solid waste by biostimulation & bioaugmentation. J. Environ. Chem. Eng., 7(3); 103054.
Zhang, C., Wu, D., & Ren, H. (2020). Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Sci. Rep., 10(1); 1–8.
Zhang, J., Lin, X., Liu, W., Wang, Y., Zeng, J., & Chen, H. (2012). Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils. J. Environ. Sci., 24(8); 1476–1482.
Zhang, K., Wang, S., Guo, P., & Guo, S. (2021). Characteristics of organic carbon metabolism & bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system. Chemosphere, 264(Part 2); 128521.