Integrated Environmental Assessment of Unsustainable Exploitation and Pollution of Shared Water Resources in Transboundary Basins of Semi-arid and Arid Regions. Case Study: Tigris-Euphrates River Basin

Document Type : Original Research Paper

Authors

1 Department of Environmental Planning, Management and Education, Faculty of Environment, University of Tehran, Tehran, Iran

2 Center for International Scientific Studies and Collaborations (CISSC), Ministry of Science, Research and Technology, Tehran, Iran

3 Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35401, USA

4 Department of Environmental Science, University of Zakho, Zakho, Kurdistan Region, Iraq

Abstract

River basins perform the crucial role of providing water resources, especially in arid regions. Due to the nature of interconnection, human interventions and natural events will cause cumulative impacts on the downstream parts of river basins. The aim of this research is to identify and evaluate the impacts of interventions and changes occurring in the upstream of the Tigris-Euphrates River Basin on the downstream parts and provide strategies to reduce and control those effects. To achieve this purpose, multi-scaled investigation of the changes and dynamics of the land cover was performed and the causes and consequences of these changes were investigated using the Driving force-Pressure-Sate-Impact-Response (DPSIR) framework. The results displayed an increase in the area of artificial lakes and agricultural lands and a decline in the area of rangelands and natural wetlands, especially in the downstream of the basin. The state of the ecosystem was under the influence of Driving forces such as population and industrial growth and political competitions of the littoral states, which led to pressure on the limited water resources and development of water management and control projects. The overall trends of changes in the state of the environment had created impacts on the ecosystem and communities that required urgent responses from the riparian countries. Finally, to foster water cooperation instead of non-constructive completions in this region, a framework was developed with an emphasis on creating a union of riparian countries and using their scientific potentials to provide effective and impartial solutions.

Keywords

Main Subjects


Adamo, N., Al-Ansari, N., & Sissakian, V. K. (2020). Global Climate Change Impacts on Tigris Euphrates Rivers Basins. Journal of Earth Sciences and Geotechnical Engineering, 10(1), 49-98.
Akadiri, S. S., Alola, A. A., & Akadiri, A. C. (2019). The role of globalization, real income, tourism in environmental. Science of the Total Environment, 687, 423–432. doi:10.1016/j.scitotenv.2019.06.139
Al-Ameri, I. D., Briant, R. M., & Engels, S. (2019). Drought severity and increased dust storm frequency in the Middle East: a case study from the Tigris–Euphrates alluvial plain, central Iraq. Weather, 74(12), 416-426. doi:10.1002/wea.3445
Al-Ansari, N. (2016). Hydro-politics of the Tigris and Euphrates basins. Engineering, 8(3). doi:10.4236/eng.2016.83015 
Al-Ansari, N., Jawad, S., Adamo, N., & Sissakian, V. K. (2019). Water Quality and its Environmental Implications within Tigris and Euphrates Rivers. Journal of Earth Sciences and Geotechnical Engineering, 9(4), 57-108.
Al-Hasani, A. (2021). Trend analysis and abrupt change detection of streamflow variations in the lower Tigris River Basin, Iraq. International Journal of River Basin Management, 19(4), 523-534. doi:10.1080/15715124.2020.1723603
Al-Madhhach, A. S., Rahi, K. A., & Leabi, W. K. (2020). Hydrological impact of Ilisu dam on Mosul Dam; the river Tigris. Geosciences, 10(4), 120. doi:10.3390/geosciences10040120
Al-Muqdadi, S. W. (2019). Developing Strategy for Water Conflict Management and Transformation at Euphrates–Tigris Basin. Water, 11(10), 2037. doi:10.3390/w11102037
Al-Quraishi, A. K., & Kaplan, D. A. (2021). Connecting changes in Euphrates River flow to hydropattern of the Western Mesopotamian Marshes. Science of The Total Environment, 768, 144445. doi:10.1016/j.scitotenv.2020.144445
Altinbilek, D., & Tortajada, C. (2012). The Atatürk Dam in the Context of the Southeastern Anatolia (GAP) Project. In C. Tortajada, D. Altinbilek, & A. Biswas (Eds.), Impacts of Large Dams: A Global Assessment. Water Resources Development and Management (pp. 171-198). Berlin, Heidelberg: Springer.
Asaad, S. S. (2023). Transboundary River Basin Euphrates-Tigris: International Legal Regulation . Russian Law Journal, 11(6s).
Ataol, M., & Onmus, O. (2021). Wetland loss in Turkey over a hundred years: implications for conservation and management. Ecosystem Health and Sustainablity, 7(1), 1930587. doi:10.1080/20964129.2021.1930587
Ayboga, E. (2019). Policy and Impacts of Dams in the Euphrates and Tigris Basin. Mesopotamia Water Forum .
Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A., & Geneletti, D. (2022). Modeling the supply, demand, and stress of water resources using ecosystem services concept in Sirvan River Basin (Kurdistan-Iran). Water Supply, 22(3), 2816–2831. doi:https://doi.org/10.2166/ws.2021.436
Basal, H., Karademir, E., Goren, H. K., Sezener, V., Dogan, M. N., Gencsoylu, I., & Erdogan, O. (2019). Cotton Production in Turkey and Europe. In K. Jabran, & B. S. Chauhan (Eds.), Cotton Production. doi:https://doi.org/10.1002/9781119385523.ch14
Berkun, M. (2010). Hydroelectric potential and environmental effects of multidam hydropower projects in Turkey. Energy for Sustainable Development, 14(4), 320-329. doi:10.1016/j.esd.2010.09.003
Bijnens, T. (2021). Hydrologic Structures in the Tigris-Euphrates Basin and Their Impact on the Vitality of the Marshes. In L. A. Jawad (Ed.), Southern Iraq’s Marshes. Coastal Research Library, vol 36: Springer, Cham. doi:10.1007/978-3-030-66238-7_7
Bilgen, A. (2018). The Southeastern Anatolia Project (GAP) in Turkey: An Alternative Perspective on the Major Rationales of GAP. Journal of Balkan and Near Eastern Studies, 1-22. doi:10.1080/19448953.2018.1506287
Bozkurt, D., & Lutfi Sen, O. (2013). Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. Journal of Hydrology, 480, 149-161. doi:10.1016/j.jhydrol.2012.12.021
Cetin, H., Laman, M., & Ertunç, A. (2000). Settlement and slaking problems in the world’s fourth largest rock-fill dam, the Ataturk Dam in Turkey. Engineering Geology, 56(3-4), 225-242. doi:10.1016/S0013-7952(99)00049-6
Chabuk, A., Al-Madhlom, Q., Al-Maliki, A., Al-Ansari, N., Hussain, H. M., & Laue, J. (2020). Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arabian Journal of Geosciences, 13, 654. doi:10.1007/s12517-020-05575-5
Darvishi Boloorani, A., Kazemi, Y., Sadeghi, A., Nadizadeh Shorabeh, S., & Argany, M. (2020). Identification of dust sources using long term satellite and climatic data: A case study of Tigris and Euphrates basin. Atmospheric Environment, 224, 117299. doi:10.1016/j.atmosenv.2020.117299
Darvishi Boloorani, A., Papi, R., Soleimani, M., Karami, L., & Neysani Samany, N. (2021). Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeolian Research, 50, 100698. doi:10.1016/j.aeolia.2021.100698
Dezfuli, A., Razavi, S., & Zaitchik, B. F. (2022). Compound Effects of Climate Change on Future Transboundary Water Issues in the Middle East. Earth’s Future, 10(4), e2022EF002683. doi:10.1029/2022EF002683
Eamen, L., Brouwer, R., & Razavi, S. (2020). The economic impacts of water supply restrictions due to climate and policy change: A transboundary river basin supply-side input-output analysis. Ecological Economics, 172, 106532. doi:10.1016/j.ecolecon.2019.106532
Freeman, K. (2007). Water wars? Inequalities in the Tigris-Euphrates river basin. Geopolitics, 6(2), 127-140. doi:10.1080/14650040108407720
GEF TWAP. (2020). River basin fact sheet: Tigris-Euphrates/Shatt al Arab Basin. UNEP/GEF.
Gleick, P. H. (1993). Water and Conflict: Fresh Water Resources and International Security. International Security, 18(1), 79-112.
Hamidi, M. (2020). The key role of water resources management in the Middle East dust events. CATENA, 187, 104337. doi:10.1016/j.catena.2019.104337
Ismael, S. S., Awdel, Z. M., & Saadi, W. F. (2020). TURKEY’S SOUTHEASTERN ANATOLIAN PROJECT IMPACT ON IRAQ’S WATER SECURITY. Journal of Critical Reviews, 7(6), 1006-1008. doi:10.31838/jcr.07.06.173
Issa, I. E., Al-Ansari, N. A., Sherwany, G., & Knutsson, S. (2014). Expected Future of Water Resources within Tigris-Euphrates Rivers Basin, Iraq. Journal of Water Resource and Protection, 6(5). doi:10.4236/jwarp.2014.65042
Jones, C., Sultan, M., Yan, E., Milewski, A., Hussein, M., Al-Dousari, A., . . . Becker, R. (2008). Hydrologic impacts of engineering projects on the Tigris–Euphrates system and its marshlands. Journal of Hydrology, 353(1-2), 59-75. doi:10.1016/j.jhydrol.2008.01.029
Kelly (Letcher), R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., . . . Voinov, A. A. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159-181. doi:10.1016/j.envsoft.2013.05.005
Kibaroglu, A. (2017). State-of-the-art review of transboundary water governance in the Euphrates–Tigris river basin. International Journal of Water Resources Development, 1-27. doi: 10.1080/07900627.2017.1408458
Kibaroglu, A., & Maden , T. E. (2014). An analysis of the causes of water crisis in the Euphrates-Tigris river basin. Journal of Environmental Studies and Sciences, 4, 347–353. doi:10.1007/s13412-014-0185-9
Kristensen, P. (2004). The DPSIR Framework. A comprehensive / detailed assessment of the vulnerability of water resources to environmental change in Africa using river basin approach. UNEP Headquarters, Nairobi, Kenya, pp. 27-29.
Kucukmehmetoglu, M. (2012). An integrative case study approach between game theory and Pareto frontier concepts for the transboundary water resources allocations. Journal of Hydrology, 450-451, 308–319. doi:10.1016/j.jhydrol.2012.04.036
Kucukmehmetoglu, M., & Geymen, A. (2014). The significance and impacts of large investments over the determination of irrigated agricultural land use: The case of the Euphrates & Tigris River Basin. Land Use Policy, 41, 514-525. doi:10.1016/j.landusepol.2014.04.006
Ly, K., Metternicht, G., & Marshall, L. (2022). Transboundary river basins: Scenarios of hydropower development and operation under extreme climate conditions. Science of The Total Environment, 803(10), 149828. doi:10.1016/j.scitotenv.2021.149828
Montazeri, A., Mazaheri, M., Morid, S., & Mosaddeghi, M. R. (2023). Effects of upstream activities of Tigris-Euphrates River Basin on water and soil resources of Shatt al-Arab Border River. Science of The Total Environment, 858, 159751. doi:10.1016/j.scitotenv.2022.159751
Mubako, S., Belhaj, O., Heyman, J., Hargrove , W., & Reyes , C. (2018). Monitoring of Land Use/Land-Cover Changes in the Arid Transboundary Middle Rio Grande Basin Using Remote Sensing. Remote Sensing, 10(12), 2005. doi:https://doi.org/10.3390/rs10122005
Mueller, A., Detges, A., Pohl, B., Reuter, M. H., Rochowski, L., Volkholz, J., & Woertz, E. (2021). Climate change, water and future cooperation and development in the Euphrates-Tigris basin. Retrieved from https://www.cascades.eu/wp-content/uploads/2021/11/Euphrates-Tigris-Report_Final.pdf
Munia, H. A., Guillaume, J. H., Mirumachi, N., Wada, Y., & Kummu, M. (2018). How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers. Hydrology and Earth System Sciences, 22, 2795–2809. doi:10.5194/hess-22-2795-2018
Muratoglu, A., Iraz, E., & Ercin, E. (2022). Water resources management of large hydrological basins in semi-arid regions: Spatial and temporal variability of water footprint of the Upper Euphrates River basin. Science of The Total Environment, 846, 157396. doi:10.1016/j.scitotenv.2022.157396
Odthar, S. H., & Salman, A. D. (2022). Identification of Oil Pollutants in Marshes Soil of Southern Iraq. Indian Journal of Ecology, 49(19), 482-490.
Quevedo, J. M., Lukman, K. M., Ulumuddin, Y. I., Uchiyama, Y., & Kohsaka, R. (2023). Applying the DPSIR framework to qualitatively assess the globally important mangrove ecosystems of Indonesia: A review towards evidence-based policymaking approaches. Marine Policy, 147, 105354. doi:10.1016/j.marpol.2022.105354
Rashid, H., Abdul Rahim, A., & Anuar, H. M. (2022). Water Projects by Turkey and Iran: The Impacts on the Right of Iraq to Access Equitable Share of Water. Resmilitaris, 12(3), 1-23.
Rateb, A., Scanlon, B. R., & Kuo, C. Y. (2021). Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Science of the Total Environment, 766, 144337. doi:10.1016/j.scitotenv.2020.144337
Rokhbin, M., Rouhani Moghaddam, M., & Aghaei Bajestani , M. (2020). Cultural and Social Effects and Consequences of Tourism with Emphasis on Religious Tourism. Journal of Tourism & Hospitality Research, 8(1), 77-89.
Sabri, K., & Emin, A. (2010). GAP Project built over Tigris and Euphrates Rivers in Southeastern Turkey, and Problems encountered. Ohrid, Republic of Macedonia: BALWOIS.
Salehi, M., Masoumi, A., & Moradhaseli, R. (2021). A study on the vertical distribution of dust transported from the Tigris–Euphrates basin to the Northwest Iran Plateau based on CALIOP/CALIPSO data. Atmospheric Pollution Research, 12(12), 101228. doi:10.1016/j.apr.2021.101228
Saysel, A. K., Barlas, Y., & Yenigün, O. (2002). Environmental sustainability in an agricultural development project: a system dynamics approach. Journal of Environmental Management, 64(3), 247-260. doi:10.1006/jema.2001.0488
Schulman, S. (2022). Iraq’s Water Plight: The Drought Between Two Rivers. The RUSI Journal, 167(2), 72-95. doi:10.1080/03071847.2022.2102781
Shahbaznezhadfard, M., & Yousefi, S. (2022). Development of a dynamics-based model for analyzing strategic water–environmental conflicts: systems thinking instead of linear thinking. Water Policy, 24(1), 83-100. doi:10.2166/wp.2021.145
Skoulikaris, C., & Zafirakou, A. (2019). River Basin Management Plans as a tool for sustainable transboundary river basins’ management. Environmental Science and Pollution Research, 26, 14835-14848. doi:10.1007/s11356-019-04122-4
Tinti, A. (2023). Scales of justice. Large dams and water rights in the Tigris–Euphrates basin. Policy and Society, puad003. doi:10.1093/polsoc/puad003
Tscherning, K., Helming, K., Krippner, B., Sieber, S., & Paloma, S. G. (2012). Does research applying the DPISR framework support decision making? Land Use Policy, 29(1), 102-110. doi:10.1016/j.landusepol.2011.05.009
UNEP. (2001). The Mesopotamian Marshlands: Demise of an Ecosystem Early Warning and Assessment Technical Report, UNEP/DEWA/TR.01-3 Rev. 1. Nairobi, Kenya: United Nations Environment Programme.
UN-ESCWA , & BGR. (2013). Inventory of Shared Water Resources in Western Asia. Beirut: United Nations Economic and Social Commission for Western Asia; Bundesanstalt für.
World Bank (2018). Beyond Scarcity: Water Security in the Middle East and North Africa. MENA Development Report. Washington, DC: World Bank.
Yilmaz, Y. A., Lutfi Sen, O., & Turuncoglu, U. U. (2019). Modeling the hydroclimatic effects of local land use and land cover changes on the water budget in the upper Euphrates – Tigris basin. Journal of Hydrology, 576, 596-609. doi:10.1016/j.jhydrol.2019.06.074
Yuan, L., He, W., Kong, Y., Ramsey, T. S., & Degefu , D. M. (2022). A multi-weight fuzzy Methodological Framework for Allocating Coalition Payoffs of Joint Water Environment Governance in Transboundary River Basins. Water Resources Management, 36, 3367–3384. doi:10.1007/s11269-022-03206-0
Zarei, M. (2020). The water-energy-food nexus: A holistic approach for resource security in Iran, Iraq, and Turkey. Water-Energy Nexus, 3, 81–94. doi:10.1016/j.wen.2020.05.004