Status, Health Effects and Remediation Techniques of E-waste – A Review

Document Type : Review Paper

Authors

Civil Engineering Department, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India

Abstract

The annual global generation of e-waste is estimated to be 59.08 million tonnes (7.37 kg per capita), out of which the major chunk is being processed in informal sector using primitive and hazardous methods in developing countries due to cheap labour, less stringent laws and regulatory policies. Despite the fact the annual global value of e-waste industry being about USD 62.5 billion that provides employment to millions in developing countries, the unstructured/informal operations in e-waste sector had and have been causing hazardous health issues in human and environment along with unlawful activities. Many studies have been reported on wide array of interrelated aspects and issues of e-waste, but only few studies have reviewed potential remediation techniques that can take care of the increasing e-waste and its sustainable management.  Therefore, disposal and remediation techniques for polluted sites have been the key concerns in the field of environmentally sustainable management (ESM) of e-waste. The present review revealed that of all the classic and hybrid remediation techniques, the biological remediation techniques being eco-friendly and cost effective needs to be explored for metal removing from contaminated environment.  The review also concludes the imminent necessity of ESM by framing and implementing regulations and laws essentially incorporating Extended Producer Responsibility (EPR) in developing countries. The review of Indian scenario suggests the scope of startups for the sustainable recycling of e-waste to achieve healthy environment, employment and economic opportunities.   

Keywords

Main Subjects


Abalansa, S., Mahrad B.E., Icely J., & Newton A. (2021). Electronic waste, an environmental problem exported to developing countries: the good, the bad and the ugly. Sustainability, 13(9); 5302. 
Acomb, J.C., Nahil, M.A., & Williams, P.T. (2013). Thermal processing of plastics from waste electrical and electronic equipment for hydrogen production. J. Anal. Appl. Pyrolysis., 103; 320–327. 
Agate, A.D. (1996). Recent advances in microbial mining. World J. Microbiol. Biotechnol., 254; 487-495.
Alam, M.G.M., Tokunaga, S., & Maekawa, T. (2001). Extraction of arsenic in a synthetic arsenic contaminated soil using phosphate. Chemosphere, 43(8); 1035–1041.
Al-Enezi, G., Hamoda, M.F., & Fawzi, N. (2004). Ion exchange extraction of metals from wastewater sludges. J. Environ. Sci. Health A Tox Hazard Subst Environ Eng., 39(2); 455-464. 
Ali, I.H., Al-Mesfer, M.K., Khan, M.I., Danish, M., & Alghamdi, M.M. (2019). Exploring adsorption process of lead (II) and chromium (VI) ions from aqueous solutions on acid activated carbon prepared from Juniperus procera leaves. Processes, 7(4); 217. 
Al-Saad, K.A., Amr, M.A., Hadi, D.T., Arar, R.S., Al-Sultani, M.M., Abdulmalik, T.A., Alsahamary, N.M., & Al-Yahri, S.H. (2012). Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water. Arab. J. Nuclear Sci. and Applications, 45(2), 335-346.
Amankwaa, E.F. (2013). Livelihoods in risk: exploring health and environmental implications of e-waste recycling as a livelihood strategy in Ghana. J. Mod. Afr. Stud., 51(4); 551–575. 
Apak, R., Tutem, E., Hugul, M., & Hizal, J. (1998). Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res., 32(2); 430–440. 
Aransiola, S.A., Ijah, U.J.J., & Abioye, O.P (2013). Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science, 2013; 1-7.
Arevalo, J., Ruiz, L.M., Perez, J., Moreno, B., & Gomez, M.A. (2013). Removal performance of heavy metals in MBR systems and their influence in water reuse. Water Sci. Technol., 67(4); 894-900. 
ASSOCHAM (2016). India’s e-waste growing at 30% per annum: assocham-cKinetics study. In: Bussiness Standards.  
Awasthi, A.K., Hassan, M., Mishra, Y.M., Pandey, A.K., Tiwary, B.N., Kuhad, R.C., Gupta, V.K., & Thakur, V.K. (2019). Environmentally sound system for e-waste: biotechnological perspectives. CRBIOT., 1; 58-64. 
Aziz, H.A., Adlan, M.N., & Ariffin, K.S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour. Technol., 99(6); 1578–1583.
Balde, C.P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The global e-waste monitor 2017: quantities, flows, and resources. United Nations University, International Telecommunication Union & International Solid Waste Association, Bonn/Geneva/Vienna. 
Bandowe, B.A.M., Bigalke, M., Boamah, L., Nyarko, E., Saalia, F.K., & Wilcke, W. (2014). Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ. Int., 65; 135-146.
Barbaro, J.R., & Barker, J.F. (2000). Controlled field study on the use of nitrate and oxygen for bioremediation of a gasoline source zone. Bioremediat. J., 4(4); 259–270. 
Battistoni, P., Cola, E., Fatone, F., Bolzonella, D., & Eusebi, A.L. (2007). Micropollutants removal and operating strategies in ultrafiltration membrane systems for municipal wastewater treatment: preliminary results. Ind. Eng. Chem. Res., 46(21); 6716-6723. 
Ben, Y.J., Li, X.H., & Yang, Y.L., et al. (2014). Placental transfer of dechlorane plus in mother-infant pairs in an e-waste recycling area (Wenling, China). Environ. Sci. Technol., 48; 5187–5193.  
Benassi, L., Zanoletti, A., Depero, L.E., & Bontempi, E. (2019). Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. J. Environ. Manage., 245; 464-470. 
Bogdan-Martin, D. (2022). How Africa is leading the way in dealing with e-waste. The UN specialized agency for ICTs. 
Brune, M.N., Goldizen, F.C., Neira, M., van den Berg, M., Lewis, N., King, M., Suk, W.A., Carpenter, D.O., Arnold, R.G., & Sly, P.D. (2013). Health effects of exposure to e-waste. Lancet Glob. Health, 1(2); e70. 
Cao, J., Xu, X., Zhang, Y., Zeng, Z., Hylkema, M.N., & Huo, X. (2018). Increased memory T cell populations in Pb-exposed children from an e-waste recycling area. Sci. Total Environ., 616-617; 988–995. 
Ceballos, M.C. & Dong, Z. (2016). The formal electronic recycling industry: challenges and opportunities in occupational and environmental health research. Environment International 95; 157-166. 
Cesaro, A., Belgiorno, V., Vaccari, M., Jandric, A., Chung, T.D., Dias, M.I., Hursthouse, A., & Salhofer, S. (2017). A device-specific prioritization strategy based on the potential for harm to human health in informal WEEE recycling. Environ. Sci. Pollut. Res., 25; 683–692. 
Chan, J.K., Xing, G.H., Xu, Y., Liang, Y., Chen, L.X., Wu, S.C., Wong, C.K.C., Clement, K.M., Leung., & Wong, M.H. (2007). Body loadings and health risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans at an intensive electronic waste recycling site in China. Environ. Sci. Technol., 41; 7668 – 7674. 
Chan, J.K.Y., Man, Y.B., Wu, S.C., & Wong, M.H. (2013a). Dietary intake of PBDEs of residents at two major electronic waste recycling sites in China. Sci. Total Environ., 463-464; 1138-1146. 
Chan. J.K., & Wong, M.H. (2013b). A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. Sci. Total Environ., 463-464; 1111–1123.
Chandna, P. & Deswal, S. (2005). E-pollution: a real dilemma. Journal of Pradushan Nirmulan, 2(4); 14-19.
Chen, A., Dietrich, K.N., Huo, X., & Ho, S. (2011). Developmental neurotoxicants in e-waste: an emerging health concern. Environ. Health Perspect., 119(4); 431–438.
Chen, D.H., Bi, X.H., Zhao, J.P., Chen, L.G., Tan, J.H., Mai, B.X., Shen, G., Fu, J., & Wong, M.H. (2009). Pollution characterization and diurnal variation of PBDEs in the atmosphere of an E-waste dismantling region. Environ. Pollut., 57; 1051–1057. 
Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X., & Chen, Y.X. (2005). Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf. B. Biointerfaces, 46(2); 101–107. 
CII (2006). E-waste management, green business opportunities. Delhi: Confederation of Indian Industry; 1.
Collins, T., Kroehling, A., Kuehr, R., & de Roos, J. (2012). E-waste: annual gold, silver ‘deposits’ in new high-tech goods worth $21 billion +; less than 15% recovered. United Nations University: Tokyo, Japan. 
Cordova-Pizarro, D., Aguilar-Barajas, I., Romero, D., & Rodriguez, C.A. (2019). Circular economy in the electronic products sector: material flow analysis and economic impact of cellphone e-waste in Mexico. Sustainability, 11(5); 1361. 
Cucchiella, F., D’Adamo, I., Lenny Koh, S.C., & Rosa, P. (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev., 51; 263–272. 
Da̧browski, A., Hubicki, Z., Podkoscielny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2); 91–106. 
Dalal, S., & Dubey, RC. (2011). Effects of crude and bioremediated thermal power plant effluents in Brassica Juncea. Soil and Sediment Contamination, 20; 329–336,  
Daum, K., Stoler, J., & Grant, R.J. (2017). Toward a more sustainable trajectory for e-waste policy: a review of a decade of e-waste research in Accra, Ghana. Int. J. Environ. Res. Public Health, 14(2); 135. 
De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol., 10; 471–477. 
Denogean, J.I. (2016). Electronic waste treatment in Mexico: viability and obstacles. Dissertation, Department of Earth and Environmental Engineering, Columbia University. 
Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. J. Hazard. Mater., 152(1); 1-31. 
Dietrich, C.C., Tandy, S., Murawskawlodarczyk, K., Banaś, A., Korzeniak, U., Seget, B., & Babst-Kostecka, A. (2021). Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. Chemosphere, 285; 131437.
Eguchi, A., Kunisue, T., Wu, Q., Trang, P.T.K., Viet, P.H., Kannan, K., & Tanabe, S. (2014). Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels. Arch. Environ. Contam. Toxicol., 67; 29–41. 
Eguchi, A., Nomiyama, K., Tue, N.M., Trang, P.T.K, Viet, P.H., Takahashi, S., & Tanabe, S. (2015). Residue profiles of organohalogen compounds in human serum from e-waste recycling sites in North Vietnam: association with thyroid hormone levels. Environ Res., 137; 440–49. 
European Parliament (2003). Directive 2002/96/EC of the European parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Off. J. Eur. Union, L37; 24–38. 
European Parliament (2012). Directive 2012/19/EU of the European parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off. J. Eur. Union, L197; 38-71
Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z., & Wang, X. (2008). Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J. Hazard. Mater., 160; 655-661. 
Fang, Y., Hozalski, R.M., Clapp, L.W., Novak, P.J., & Semmens, M.J. (2002). Passive dissolution of hydrogen gas into groundwater using hollow-fiber membranes. Water Res., 36(14); 3533–3542. 
Feng, D., Aldrich, C., & Tan, H. (2000). Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner. Eng., 13(6); 623–642. 
Fonti, V., Dell’Anno, A., & Beolchini, F. (2016). Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci. Total Environ., 563-564; 302–319.
Forti, V., Balde, C.P., Kuehr, R., & Bel, G. (2020). The global e-waste monitor: quantities, flows, and the circular economy potential. United Nations University, Tokyo, Japan. 
Freeman, M.H. (1989). Standard handbook of hazardous waste treatment and disposal. McGraw-Hill Company, USA. 
Fu, J., Zhang, H., Zhang, A., & Jiang, G. (2018). E-waste recycling in China: a challenging field. Environ. Sci. Technol., 52(12); 6727–6728. 
Gaidajis, G., Angelakoglou, K., & Aktsoglou, D. (2010). E-waste: environmental problems and current management. J. Eng. Sci. Technol. Rev., 3(1); 193–199. 
Gangadharan, P., Nambi, I.M., & Senthilnathan, J. (2015). Liquid crystal polaroid glass electrode from e-waste for synchronized removal/recovery of Crþ6 from wastewater by microbial fuel cell. Bioresour. Technol., 195; 96–101. 
Garlapati, V.K. (2016). E-waste in India and developed countries: management, recycling, business and biotechnological initiatives. Renew. Sustain. Energy Rev., 54; 874-888. 
Gill, P. (2019). Developing countries like India bear the brunt of global e-waste. Business Insider India. 
Giwa, A., & Hasan, S.W. (2015). Numerical modeling of an electrically enhanced membrane bioreactor (MBER) treating medium-strength wastewater. J. Environ. Manage., 164; 1–9. 
Hinchliffe, D., & Gunsilius, E. (2017). Building the link: leveraging formal-informal partnerships in the Indian e-waste sector. International Zusammenarbeit (GIZ) GmH, Frankfurt. 
Grant. K., Goldizen, F.C., Sly, P.D., Brune, M.N., Neira, M., van den Berg, M., & Norman, R.E. (2013). Health consequences of exposure to e-waste: a systematic review. Lancet Glob. Health, 1(6); e350-e361. 
Greenpeace (2019). China’s e-waste worth $23.8 billion by 2030. Greenpeace East Asia. 
Guo, G., Zhou, Q., & Ma, L.Q.  (2006). Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review. Environ. Monit. Assess., 116; 513–528. 
Guo, L.C., Yu, S., Wu, D., et al. (2019). Disruption of thyroid hormone regulated proteins and gene expression by polychlorinated biphenyls, polybrominated diphenyl ethers and new flame retardants in residents of an e-waste region. Environ. Pollut., 254; 112925.
Guo, Y., Huo, X., Li, Y., Wu, K., Liu, J., Huang, J., Zheng, G., Xiao, Q., Yang H., Wang, Y., Chen, A., & Xu, X. (2010). Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci. Total Environ., 408; 3113-3117. 
Heacock, M., Kelly, C.B., & Suk, W.A. (2016). E-waste: the growing global problem and next steps. Rev. Environ. Health, 31; 131–35. 
Hseu, Z.-Y., Huang, Y.-T., & Hsi, H.C. (2014). Effects of remediation train sequence on      decontamination of heavy metal-contaminated soil containing mercury. J. Air Waste Manag. Assoc., 64(9); 1013–1020. 
Huang, K., Inoue, K., Harada, H., Kawakita, H., & Ohto, K. (2011). Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants. J. Mater. Cycle Waste Manag., 13; 118–126. 
Huo, X., Dai, Y., Yang, T., Zhang, Y., Li, M., & Xu, X. (2019a). Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci. Total Environ., 664; 690–697. 
Huo, X., Wu, Y., Xu, L., Zeng, X., Qin, Q., & Xu, X. (2019b). Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. Environ. Pollut., 245; 453–61. 
Ignatuschtschenko, E. (2017). E-waste management in China: bridging the formal and informal sectors. J. Chin. Gov., 2(4); 385–410. 
ILO (2019). From waste to jobs: Decent work challenges and opportunities in the management of e-waste in India. International Labour Office, Sectoral Policy Department: Geneva, Switzerland.
Isernia, R., Passaro, R., Quinto, I., & Thomas, A. (2019). The reverse supply chain of the e-waste management processes in a circular economy framework: evidence from Italy. Sustainability, 11(8); 2430. 
Isimekhai, K.A. (2017). Environmental risk assessment for an informal e-waste recycling site in Lagos State, Nigeria. Middlesex University, London, UK. 
Islam, A., Ahmed, T., Awual, M.R., Rahman, A., Sultana, M., Aziz, A.A., Monir, M.U., Teo, S.H., & Hasan, M. (2020). Advances in sustainable approaches to recover metals from e-waste-a review. J. Clean. Prod., 244; 118815. 
Islam, M.T., & Huda, N. (2019). E-waste in Australia: generation estimation and untapped material recovery and revenue potential. Journal of Cleaner Production, 237; 117787.
Joon, V., Shahrawat, R., & Kapahi, M. (2017). The emerging environmental and public health problem of electronic waste in India. J. Health Pollut., 7(15); 1–7. 
Kalia, P., Zia, A., & Mladenovic, D. (2022). Examining country development indicators and e-waste under the moderating effect of country development levels and e-waste policy. International Journal of Quality & Reliability Management. 39(7); 1601-1616.
Kaminsky, J.A. (2016). Cultured construction: global evidence of the impact of national values on piped-to-premises water infrastructure development. Environmental Science & Technology, 50(14); 7723-7731.
Kantarelis, E., Yang, W., Blasiak, W., Forsgren, C., & Zabaniotou, A. (2011). Thermochemical treatment of e-waste from small household appliances using highly preheated nitrogen-thermogarvimetric investigation and pyrolysis kinetics. Appl. Energy, 88(3); 922–929. 
Kasper, A.C., Gabriel, A.P., de Oliveira, E.L.B., Juchneski, N.C.F., & Veit, H.M. (2015). Electronic waste recycling techniques. In:   Veit, H., & Bernardes, A.M. (eds) Electronic waste. Springer International Publishing; 87-127. 
Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., & Zhu, Y.G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut., 152(3); 686–692. 
Komnitsas, K., Bartzas, G., & Paspaliaris, I. (2004). Efficiency of limestone and red mud barriers: Laboratory column studies. Mineral., Eng. 17(2); 183–194. 
Kopacek, B. (2021). There’s much value in store in e-waste. Bussinessline. 
Kumar, K., Suthar, S., Dastidar, M.G., & Sreekrishnan, T.R. (2014). Bioleaching of heavy metals from textile sludge by indigenous sulfur-and-iron-oxidizing microorganisms using elemental sulfur and ferrous sulfate as energy sources: a comparative study. Geomicrobiology Journal, 31(10); 847-854. 
Ladou. J., & Lovegrove, S. (2008). Export of electronics equipment waste. Int. J. Occup. Environ. Health, 14; 1-10. 
Leur, A.V., & Walter, D. (2019). From waste to jobs: decent work challenges and opportunities in the management of e-waste in India. International Labour Office (ILO), Sectoral Policies Department, Geneva, Switzerland. 
Li, J., Zhang, G.N., & Li, Y. (2010). Review on the remediation technologies of POPs. Hebei. Environ. Sci., 65; 1295–1299.
Li, L., Xu, Z.R., Zhang, C., Bao, J., & Dai, X. (2012). Quantitative evaluation of heavy metals in solid residues from sub-and super-critical water gasification of sewage sludge. Bioresour. Technol., 121; 169–175. 
Li, M., Huo, X., Pan, Y., Cai, H., Dai, Y., & Xu, X. (2018). Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area. Environ. Int., 111; 362–71. 
Li, Z., Yu, J.W., & Neretnieks, I. (1996). A new approach to electrokinetic remediation of soils polluted by heavy metals. J. Contam. Hydrol., 22(3-4); 241–253.   
Liang, C., Das, K., & McClendon, R. (2003). The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol., 86; 131-137. 
Liddle, C. (2013). Principles of monitoring postoperative patients. Nursing times, 109; 24-26.     
Liu, S.H., Zeng, G.M., Niu, Q.Y., Liu, Y., Zhou, L., Jiang, L.H., Tan, X.F., Xu, P., Zhang, C., & Cheng, M. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol., 224; 25-33.
Liu, W., Huo, X., Liu, D., Zeng, X., Zhang, Y., & Xu, X. (2014). S100β in heavy metal-related child attention-deficit hyperactivity disorder in an informal e-waste recycling area. Neurotoxicology, 45; 185–191. 
Lohner, S.T., & Tiehm, A. (2009). Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. Environ. Sci. Technol., 43(18); 7098–7104. 
Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., & Giuliano, V. (2012). Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochem., 47(11); 1633–1639. 
Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manage., 174; 14-25. 
Magalini, F., Kuehr, R., & Balde, C.P. (2015). E-waste in Latin America: statistical analysis and policy recommendations. United Nations University – Institute for the Advanced Study of Sustainability; 1-35.
Mahmoud, A.M., Ibrahim, F.A., Shabaan, S.A., & Youssef, N.A. (2015). Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egyption J. Petroleum, 24; 27-35.
Manhart, A., Osibanjo, O., Aderinto, A., & Prakash, S. (2011). Informal e-mawaste management in Lagos, Nigeria–socio-economic impacts and feasibility of international recycling co-operations. Final Rep. Compon., 3; 1–129. 
Manomaivibool, P. (2009). Extended producer responsibility in a non-OECD context: the management of waste electrical and electronic equipment in India. Resour. Conserv. Recycl., 53; 136–144.                                                                                                             
Martin, T.A., & Ruby, M.V. (2004). Review of in situ remediation technologies for lead, zinc, and cadmium in soil. Remediat. J. Eviron. Cleanup Cost. Technol. Tech., 14(3); 35-53. 
Matsukami, H., Tue, N.M., Suzuki, G., et al. (2015). Flame-retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci. Total Environ., 514; 492–99. 
Mejame, P.P.M., Jung, D.Y., Lee, H., Lee, D.S., & Lim, S.R. (2020). Effect of technological developments for smartphone lithium battery on metal-derived resource depletion and toxicity potentials. Resources, Conservation and Recycling, 158; 104797.
Migliano, J.E.B., Demajorovic, J., & Xavier, L.H. (2014). Shared responsibility and reverse logistics systems for e-waste in Brazil. J. Oper. Supply Chain. Manag., 7(2); 91–109. 
MoEFCC (2003). The hazardous wastes (management and handling) amendment rules, 2003. Ministry of Environment, Forest and Climate Change, Government of India.
MoEFCC (2008). Guidelines for environmentally sound management of e-waste, 2008. Ministry of Environment, Forest and Climate Change, Government of India.
MoEFCC (2011). E-waste (management and handling) rules, 2011. Ministry of Environment, Forest and Climate Change, Government of India.
MoEFCC (2018). E-waste (management) amendment rules, 2018. Ministry of Environment, Forest and Climate Change, Government of India.
MoEFCC (2022). E-waste (management) rules, 2022. Ministry of Environment, Forest and Climate Change, Government of India.
MoEFCC (2022). Battery waste management rules, 2022. Ministry of Environment, Forest and Climate Change, Government of India.
Mojiri, A. (2011). The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. Journal of Biological and Environmental Sciences, 5(13); 17-22.
Mulligan, C.N., & Wang, S. (2006). Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng. Geol., 85(1-2); 75–81. 
Mulligan, C.N., Yong, R.N., & Gibbs, B.F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol., 60(1-4); 193–207. 
Nakajima, A., & Tsuruta, T. (2004). Competitive biosorption of thorium and uranium by Micrococcus luteus. J. Radioanal. Nucl. Chem., 260(1); 13–18.
Narayanasamy, M., Dhanasekaran, D., & Thajjudin, N. (2021). Bioremediation of noxious metals from e-waste printed circuit boards by Frankia. Microbiol. Res., 245; 126707.
Narayanasamy, M., Dhanasekaran, D., Vinothini, G., & Thajjudin, N. (2018). Extraction and recovery of precious metals from electronic waste printed circuit boards by bioleaching acidiophilic fungi. Int. J. Environ. Sci. Technol., 15; 119-132.
Navarro, A., Cardellach, E., Canadas, I., & Rodriguez, J. (2013). Solar thermal vitrification of mining contaminated soils. Int. J. Miner. Process., 119; 65–74.
Navarro, P., & Alguacil, F.J. (2002). Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy, 66; 101–105.
Needleman, H. (2009). Low level lead exposure: history and discovery. Ann. Epidemiol., 4; 235-238.
Nejad, Z.D., Jung, M.C., & Kim, K.H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health, 40; 927-953.
Nnorom, I.C., & Odeyingbo, O.A. (2020). Electronic waste management practices in Nigeria. Butterworth-Heinemann: Oxford, UK; 323–354.
Obaje, S.O. (2013). Electronic waste scenario in Nigeria: issues, problems and solutions. Int. J. Eng. Sci. Invent., 2(11); 31–36.
Ok, Y.S., Lim, J.E., & Moon, D.H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ. Geochem. Health, 33; 83-91.
Pant, D., Joshi, D., Upreti, M.K., & Kotnala, R.K. (2012). Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Manag., 32; 979-990.
Pariatamby, A., & Victor, D. (2013). Policy trends of e-waste management in Asia. J Mater Cycles Waste Manag, 15; 411–419. 
Pathak, A., Dastidar, M.G., & Sreekrishnan, T.R. (2009). Bioleaching of heavy metals from sewage sludge: A review. J. Environ. Manage., 90(8); 2343-2353.
Pathak, A., Singh, P., Dhama, P., Dastidar, M.G., Kim, D.J., & Heyes, G. (2014). Comparative study on simultaneous leaching of nutrients during bioleaching of heavy metals from sewage sludge using indigenous iron and sulphur oxidising microorganisms. Can. Metall. Q., 53(1); 65-73.
Peng, G., Tian, G., Liu, J., Bao, Q., & Zang, L. (2011). Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalination 271(1-3); 100–104.
Periyasamy, S., Kumar, I.A., & Viswanathan, N. (2020). Activated carbon from different waste materials for the removal of toxic metals. In: Naushad, M., & Lichtfouse, E. (Eds.), Green Materials for Wastewater Treatment. Springer International Publishing, Cham., 38; 47–68.
Perkins, D.N., Drisse, M.N.B., Nxele, T., & Sly, P.D. (2014). E-waste: a global hazard. Ann. Glob. Health, 80(4); 286–295.
Peters, R.W., & Shem, L. (1993). Separation of heavy metals: removal from industrial wastewaters and contaminated soil. In: Symposium on emerging separation technologies for metals and fuels. Palm Coast, FL, United States.
Pourhossein, F., & Mousavi, S.M. (2018). Enhancement of copper, nickel, and gallium recovery from LED waste by adaptation of Acidithiobacillus ferrooxidans. Waste Manage., 79; 98–108. 
Pradhan, D., Sukla, L.B., Sawyer, M., Rahman, & P.K. (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem., 55; 1–20. 
Puckett, J., Byster, I., Westerrelt, S., Gutierrez, R., Davis, S., Hussain, A., & Madhumita, D.D. (2002). The Basel Action Network (BAN) and Silicon Valley Toxics Coalition (SVTC) with Toxics Link India, SCOPE Pakistan and Greenpeace China E-Exporting Harm: The High-Tech Trashing of Asia. Basel Action Network, USA.
Pwamang, J.A. (2013). Government policy and initiatives on e-waste in Ghana. In: Proceedings of the 3rd Annual Global E-Waste Management (GEM) Network Meeting, USA. 
Qdais, H.A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2); 105–110. 
Qin, F., Shan, X.Q., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57; 253-263.
Qu, W.Y., Bi, X.H., Sheng, G.Y., Lu, S.Y., Fu, H., Yuan, J., & Li, L. (2007). Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China. Environ. Int., 33; 1029–1034.
Rani, M.J., Hemambika, B., Hemapriya, J., & Kannan, V.R. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach. Afr. J. Environ. Sci. Technol., 4(2); 77-83. 
Reddy, K.R., Xie, T., & Dastgheibi, S. (2014). Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. J. Environ. Eng., 140(12); 04014043.
Ren, W.X., Li, P.J., Geng, Y., & Li, X.J., (2009). Biological leaching of metals from a contaminated soil by Aspergillus niger. J. Hazard. Mater. 167; 164–169. 
Renu, Agarwal, M., Singh, K., Upadhyaya, S., & Dohare, R.K. (2017). Removal of heavy metals from wastewater using modified agricultural adsorbents. Materials Today, 4; 10534-10538.
Robinson, B.H. (2009). E-waste: an assessment of global production and environmental impacts. Sci. Total environ., 408; 183-191.
Ron, E.Z., & Rosenberg, E. (2001). Natural roles of biosurfactants: Minireview. Environ. Microbiol., 3(4); 229–236.
Sandoval, A.D.O., Briao, V.B., Fernandes, V.M.C., Hemkemeier, A., Friedrich, & M.T. (2019). Stormwater management by microfiltration and ultrafiltration treatment. J. Water Process. Eng., 30; 100453.
Sansotera, M., Navarrini, W., Talaeemashhadi, S., & Venturini, F. (2013). Italian WEEE management system and treatment of end-of-life cooling and freezing equipments for CFCs removal. Waste Management, 33(6); 1491-1498.
Scheutz, C., Mosbaek, H., & Kjeldsen P. (2004). Attenuation of methane and volatile organic compounds in landfill soil covers. J. Environ. Qual., 33; 61–71.
Seki, K., Thullner, M., Hanada, & J., Miyazaki, T. (2006). Moderate bioclogging leading to preferential flow paths in biobarriers. Groundw. Monit. Remediat., 26(3); 68–76.
Shahrabi-Farahani, M., Yaghmaei, S., Mousavi, S., & Amiri, F. (2014). Bioleaching of metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor. Sep. Purif. Technol., 132; 41–49.
Sharma, R.K., Agrawal, M., & Marshal, F. (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66(2); 258-66.
Sharma, S., & Malaviya, P. (2014). Bioremediation of tannery wastewater by chromium resistant fungal isolate Fusarium chlamydosporium SPFS2-g. Curr. World Environ. 9(3); 721-727.
Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L.M. (2018). Recent advances in conventional and contemporary methods for remediation of metal-contaminated soils. 3 Biotech, 8; 216. 
Sheet, I., Kabbani, A., & Holail, H. (2014). Removal of heavy metals using nano structured graphite oxide, silica nano-particles and silica/graphite oxide composite. In: International Conference of Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES), 14(50); 130-138.
Shen, G., Lu, Y., & Hong, J. (2006). Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicol. Environ. Saf., 63; 474-480.
Shi, W., Liu, C., Ding, D., Lei, Z., Yang, Y., Feng, C., & Zhang, Z. (2013). Immobilization of metals in sewage sludge by using subcritical water technology. Bioresour. Technol., 137; 18–24.
Sieff, K. (20121). The world is drowning in ever-growing mounds of garbage. The Washington Post.
Sotelo, S.C., Ojeda-Benitez, S., Velázquez-Victorica, K.I., Soto, N., Cueto, R.G., Taboada-González, P., & Aguilar-Virgen, Q. (2016). Electronic waste in Mexico-challenges for sustainable management. In: E-waste in Transition, Chapter 5; 95-119. 
Sovacool, B.K. (2019). Toxic transitions in the lifecycle externalities of a digital society: the complex afterlives of electronic waste in Ghana. Resour. Policy, 64; 101459. 
Streicher-Porte, M., Widmer, R., Jain, A., Bader, H.P., Scheidegger, R., & Kytzia, S. (2005). Key drivers of the e-waste recycling system: assessing and modelling e-waste processing in the informal sector in Delhi. Environmental Impact Assessment Review, 25; 472 – 491. 
Sullivan, J. (2014). Trash or treasure: global trade and the accumulation of e-waste in Lagos, Nigeria. Afr. Today, 61(1); 89–112. 
Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J. Hazard. Mater., 84(2-3); 297–319.
Tiwari, S., Hasan, A., & Pandey, L.M. (2017). A novel bio-sorbent comprising encapsulated Agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb (II). J. Environ. Chem. Eng., 5(1); 442–452.
Tsydenova, N., & Heyken, M. (2018). Formal and informal e-waste collection in Mexico City. In: Cascade Use in Technologies, Springer, Berlin/Heidelberg, Germany; 30–37.
Tsydenova, O., & Bengtsson, M. (2011). Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag., 31; 45–58.
Turaga, R.M.R., Bhaskar, K., Sinha, S., Hinchliffe, D., Hemkhaus, M., Arora, R., Chatterjee, S., Khetriwal, D.S., Radulovic, V., & Singhal, P. (2019).  E-waste management in India: issues and strategies. Vikalpa, 44(3); 127–162.
UNEP (2012). United Nation Environment Programme Report: e-waste volume III: WEEE/E-waste “Take Back System”. Division of Technology, Industry and Economics, International Environmental Technology Centre, Osaka.
Vats, M.C., & Singh, S.K. (2015). Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs). Waste Manage., 45; 280–288.
Vidali, M. (2001). Bioremediation - an overview. Pure Appl. Chem., 73(7); 1163–1172.
Virkutyte, J., Sillanpaa, M., & Latostenmaa, P. (2002). Electrokinetic soil remediation – critical overview. Sci. Total Environ., 289(1-3); 97–121.
Wagner, M., Balde C.P., Luda, V., Nnorom, I.C., Kuehr, R., & Iattoni, G. (2022). Regional e-waste monitor for Latin America: results for the 13 countries participating in project UNIDO-GEF 5554. UNI/UNITAR, Bonn, Germany.
Wang, F., Huisman, J., Marinelli, T., Zhang, Y., & van Ooyen, S.V. (2008). Economic conditions for formal and informal recycling of e-waste in China. In: Electronics Goes Green 2008, Fraunhofer IRB Verlag Stuttgart Germany. 
Wang, G., Fan, Z., Wu, D., Qin, L., Zhang, G., Gao, C., & Meng, Q. (2014). Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination, 349; 136–144. 
Wang, H., Lv, S., Li, F., Liu, Q., & Ke, S. (2010). Study on the changes of urinary 8-hydroxydeoxyguanosine levels and burden of heavy metal around e-waste dismantling site. Sci. Total Environ., 408; 6092–6099.
Wang, H., Ma, J.W., Fan, X.Y., & Luo, Q. (2007). Research progress on enhancement of in situ remediation of heavy metal by electrokinitics. Ecol. Environ. Sci., 16(1); 223–227.
Wang, J., & Chen, C. (2009). Biosorbents for metals removal and their future. Biotechnol. Adv., 27(2); 195–226.
Wang, J.P., & Guo, X.K. (2006). Impact of electronic wastes recycling on environmental quality. Biomed. Environ. Sci., 19; 137–142.
Wang, Y., Hu, J., Lin, W., Wang, N., Li, C., Luo, P., Hashmi, M.Z., Wang, W., Su, X., & Chen, C. (2016). Health risk assessment of migrant workers’ exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: indication for a new wealth gap in environmental rights. Environ. Int., 87; 33-41.
Wei, L., & Liu, Y. (2012). Present status of e-waste disposal and recycling in China. Procedia Environ. Sci., 16; 506–514. 
Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., & Boni, H. (2005). Global perspectives on e-waste. Enviro. Impact Assess. Rev., 25; 436–458. 
Wong, C.S.C., Duzgoren-Aydin, N.S., Aydin, A., & Wong, M.H. (2007). Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ. Pollut., 148; 62–72.
Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater., 174; 1-8. 
Wu, L., Luo, Y., Christie, P., & Wong, M. (2003). Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere, 50; 819-822.
Wuana, R.A., & Okieimen, F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011: 1-20.
Xing, G.H., Chan, J.K.Y., Leung, A.O.W., Wu, S.C., & Wong, M.H. (2009). Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ. Int., 35; 76–82.
Xu, L., Ge, J., Huo, X., Zhang, Y., Lau, A.T.Y., & Xu, X. (2016). Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. Sci. Total Environ., 550; 1163–70.
Xu, L., Huo, X., Zhang, Y., Li, W., Zhang, J., & Xu, X. (2015 a). Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. Environ. Pollut., 196; 414–22. 
Xu, P., Lou, X., Ding, G., et al. (2014 a). Association of PCB, PBDE and PCDD/F body burdens with hormone levels for children in an e-waste dismantling area of Zhejiang Province, China. Sci. Total Environ., 499; 55–61.
Xu, P., Lou, X., Ding, G., et al. (2015 b). Effects of PCBs and PBDEs on thyroid hormone, lymphocyte proliferation, hematology and kidney injury markers in residents of an e-waste dismantling area in Zhejiang, China. Sci. Total Environ., 536; 215–222. 
Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., & Xie, G.X. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ., 424; 1-10.
Xu, X., Liu, J., Huang, C., Lu, F., Chiung, Y.M., & Huo, X. (2015 c). Association of polycyclic aromatic hydrocarbons (PAHs) and lead co-exposure with child physical growth and development in an e-waste recycling town. Chemosphere, 139; 295–302.
Xu, X., Liu, J., Zeng, X., Lu, F., Chen, A., & Huo, X., (2014 b). Elevated serum polybrominated diphenyl ethers and alteration of thyroid hormones in children from Guiyu, China. PLoS One, 9; e113699. 
Yang, H., Huo, X., Yekeen, T.A., Zheng, Q., Zheng, M., & Xu, X. (2013). Effects of lead and cadmium exposure from electronic waste on child physical growth. Environ. Sci. Pollut. Res. Int., 20; 4441–4447.
Yang, T., Huang, H.J. & Lai, F.Y. (2017). Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China. Trans. Nonferrous Met. Soc. China, 27(10); 2249-2259.
Yang, W., Song, W., Li, J., & Zhang, X. (2020). Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere, 249; 126134. 
Yang, Y., Lu, X.S., Li, D.L., & Yu, Y.J. (2013). Effects of environmental lead pollution on blood lead and sex hormone levels among occupationally exposed group in an e-waste dismantling area. Biomed. Environ. Sci., 26; 474–484.
Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci., 16; 722–729.
Yesil, H., & Tugtas, A.E. (2019). Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Sci. Total Environ. 693; 133608.
Yogeshwaran, V., & Priya, A.K. (2019). Removal of heavy metals using nano particles – a review. Indian Journal of Environmental Protection, 39(1); 17-21.
Zeng, J., Li, J., Gou, M., Xia, Z.-Y., Sun, Z.Y., & Tang, Y.Q. (2019a) Effective strategy for improving sludge treatment rate and microbial mechanisms during chromium bioleaching of tannery sludge. Process Biochemistry, 83; 70-79.
Zeng, X., Mathews, J., & Li, J. (2018). Urban mining of e-waste is becoming more cost effective than virgin mining. Environ. Sci. Technol., 52(8); 4835-4841.
Zeng, X., Xu, X., Qin, Q., Ye, K., Wu, W., & Huo, X. (2019b). Heavy metal exposure has adverse effects on the growth and development of preschool children. Environ. Geochem. Health, 41; 309–321. 
Zhang, C., Lai, C., Zeng, G.M., Huang, D.L., Yang, C.P., Wang, Y., Zhou, Y.Y., & Cheng, M. (2016). Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res., 95; 103-112.
Zhang, Y., Xu, X., & Chen, A., et al. (2018). Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod. Toxicol., 75; 49–55. 
Zhao, F.J, Lombi, E., & Mc Grath, S.P. (2003). Assessing the potential of Zn and Cd phytoremediation with the Hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249(1); 37-43.
Zhao, G.F., Wang, Z.J., Dong, M.H., Rao, K.F., Luo, J.P., & Wang, D.H. (2008). PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources. Sci. Total Environ., 397; 46–57. 
Zhao, G.F., Wang, Z.J., Zhou, H.D., Zhao, Q. (2009). Burdens of PBBs, PBDEs, and PCBs in tissues of the cancer patients in the e-waste disassembly sites in Zhejiang, China. Sci. Total Environ., 407(17); 4831–4837. 
Zheng, J., He, C.T., Chen, S.J., et al. (2017a). Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-waste recycling workers. Environ. Int. 102; 138–144. 
Zheng, M.Y., Li, X.H., Zhang, Y., Yang, Y.L., Wang, W.Y., & Tian, Y. (2017b). Partitioning of polybrominated biphenyl ethers from mother to fetus and potential health-related implications. Chemosphere, 170; 207–215. 
Zhou, D.M., Hao, X.Z., Xue, Y., Cang, L., Wang, Y.J., & Chen, H.M. (2004). Advances in remediation technologies of contaminated soils. Ecol. Environ. Sci., 13(2); 234–242. 
Zhou, G., Zhang, H., Yang, W., Wu, Z., Liu, W., & Yang, C. (2020). Bioleaching assisted foam fractionation for recovery of gold from the printed circuit boards of discarded cellphone. Waste Manage., 101; 200–209.