Akpor, O. B., Muchie, M., & Ohiobor, G. (2015). Coagulation-flocculation studies on wastewater from a fish processing plant. International Journal of Environmental Science and Technology, 12(11), 3411-3418.
Al-Dawery, S. (2016). Effects of suspended solid and polyelectrolyte on settling and rheological properties of municipal activated sludge. Journal of Environmental Chemical Engineering, 4(4), 4731–4743. https://doi.org/10.1016/j.jece.2016.11.009
Al-Dawery, S., & Reddy, S. (2017). An experimental study on the Rheological properties of conditioned Municipal activated sludge. Journal of Engineering Science and Technology, 12(1), 138–154.
Anjum, M., Bilal, M., Asghar, M., Shahbaz, M., & Ashraf, M. (2018). Physicochemical and bacteriological characterization of fish processing wastewater: A case study of private fish processing industry in Pakistan. Environmental Science and Pollution Research, 25(9), 8713-8723.
Baird, R., Eaton, A. D., Rice, E. W., & Bridgewater, L. (2017). Standard methods for the examination of water and wastewater. American Public Health Association.
Bhamidipati, S. H., Vadlamudi, D. P., & Moka, S. (2021). Polymers as coagulants for wastewater treatment. Advanced Materials and Technologies for Wastewater Treatment, 85–114. https://doi.org/10.1201/9781003138303-5
Bureau of Fisheries and Aquatic Resources. (2016). Philippine Fisheries Profile 2016. Department of Agriculture, Bureau of Fisheries and Aquatic Resources.
Chowdhury, P., Viraraghavan, T., & Srinivasan, A. (2010). Biological treatment processes for fish processing wastewater – A Review. Bioresource Technology, 101(2), 439–449. https://doi.org/10.1016/j.biortech.2009.08.065
El-Naggar, A., El-Baz, A., & El-Hendawy, H. (2015). Characterization and treatment of fish processing wastewater from four different Egyptian plants. Desalination and Water Treatment, 54(7), 1979-1990.
Guimarães, J. T., Souza, A. L. M., Brígida, A. I., Furtado, A. A. L., S. Chicrala, P. C. M., Santos, V. R. V., Alves, R. R., Luiz, D. B., & Mesquita, E. F. M. (2018). Quantification and characterization of effluents from the seafood processing industry aiming at Water Reuse: A pilot study. Journal of Water Process Engineering, 26, 138–145. https://doi.org/10.1016/j.jwpe.2018.10.006
Hussaini Jagaba, A. (2018). Wastewater Treatment Using Alum, the Combinations of Alum-Ferric Chloride, Alum-Chitosan, Alum-Zeolite and Alum- Moringa Oleifera as Adsorbent and Coagulant. International Journal of Engineering Management, 2(3), 67. https://doi.org/10.11648/j.ijem.20180203.13
Iqbal, A., & Zahra, N. (2018). Coagulation efficiency comparison of natural and its blended coagulant with alum in water treatment. Desalination and water treatment, 109, 188–192. https://doi.org/10.5004/dwt.2018.22120
J. Lim, T. Kim and S. Hwang, Treatment of fish-processing wastewater by co-culture of Candida rugopelliculosa and Brachionus plicatilis, Wat. Res., 37 (2003) 2228–2232.
Khan, N., & Malik, A. (2016). Removal of turbidity from the fish processing wastewater by coagulation–flocculation and sedimentation processes. International Journal of Environmental Science and Technology, 13(6), 1449-1458.
Lee, W.C., & Chang, C.C. (2022). Effectively recycling swine wastewater by coagulation–flocculation of nonionic polyacrylamide. Sustainability, 14(3), 1742. https://doi.org/10.3390/su14031742
Maharani, A., Setiawan, D. & Ningsih, E. (2021). Comparison of the effectiveness of natural coagulant performance on % bod removal and % cod removal in pharmaceutical industry waste. Tibuana, 4(01), 55–60. https://doi.org/10.36456/tibuana.4.01.3179.55-60
Mannacharaju, M., Kannan Villalan, A., Shenbagam, B., Karmegam, P. M., Natarajan, P., Somasundaram, S., Arumugam, G., & Ganesan, S. (2019). Towards sustainable system configuration for the treatment of fish processing wastewater using bioreactors. Environmental Science and Pollution Research, 27(1), 353–365. https://doi.org/10.1007/s11356-019-06909-x
MD 145-93-Wastewater Re-Use and Discharge.
Omoju, O. J., & Uzodinma, E. O. (2020). Optimization of turbidity removal from fish processing wastewater using alum and polyacrylamide (PAM). Heliyon, 6(10), e05134.
Rasheed, F. A. (2017). Removal of water turbidity using different coagulants. Journal of Zankoy Sulaimani - Part A, 19(2), 115–126. https://doi.org/10.17656/jzs.10617
Ray, A. K., Viraraghavan, T., & Srinivasan, A. (2010). Biological treatment processes for fish processing wastewater – A review. Bioresource Technology, 101(2), 439–449. https://doi.org/10.1016/j.biortech.2009.08.065
Takeshita, S., Farzaneh, H., & Dashti, M. (2020). Life-cycle assessment of the wastewater treatment technologies in Indonesia’s fish-processing industry. Energies, 13(24), 6591. https://doi.org/10.3390/en13246591
Youravong, W., & Marthosa, S. (2017). Membrane technology in fish-processing waste utilization. Sustainability Challenges in the Agrofood Sector, 575–595. https://doi.org/10.1002/9781119072737.ch24