Beyzavi, H., Klet, R. C., Tussupbayev, S., Borycz, J., Vermeulen, N. A., Cramer, C. J., . . . Farha, O. K. (2014). A hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. Journal of the American Chemical Society, 136(45), 15861-15864.
Carrasco, S., Sanz-Marco, A., & Martín-Matute, B. (2019). Fast and robust synthesis of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2. Organometallics, 38(18), 3429-3435.
Chen, A., Zhang, Y., Chen, J., Chen, L., & Yu, Y. (2015). Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. Journal of Materials Chemistry A, 3(18), 9807-9816.
Das, R., Manna, S. S., Pathak, B., & Nagaraja, C. (2022). Strategic Design of Mg-Centered Porphyrin Metal–Organic Framework for Efficient Visible Light-Promoted Fixation of CO2 under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS applied materials & interfaces, 14(29), 33285-33296.
Deng, Y., Liu, Y., Chen, Y., Cheng, L., Dai, W., & Ji, H. (2023). Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks. Applied Surface Science, 614, 156250.
Ema, T., Miyazaki, Y., Koyama, S., Yano, Y., & Sakai, T. (2012). A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates. Chemical Communications, 48(37), 4489-4491.
Feng, D., Chung, W.-C., Wei, Z., Gu, Z.-Y., Jiang, H.-L., Chen, Y.-P., . . . Zhou, H.-C. (2013). Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. Journal of the American Chemical Society, 135(45), 17105-17110.
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An amine‐functionalized titanium metal–organic framework photocatalyst with visible‐light‐induced activity for CO2 reduction. Angewandte Chemie International Edition, 51(14), 3364-3367.
Gulati, S., Vijayan, S., Kumar, S., Harikumar, B., Trivedi, M., & Varma, R. S. (2023). Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coordination Chemistry Reviews, 474, 214853.
He, C., Lu, K., & Lin, W. (2014). Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. Journal of the American Chemical Society, 136(35), 12253-12256.
He, X., Gao, X., Chen, X., Hu, S., Tan, F., Xiong, Y., . . . Wei, F. (2023). Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active sites for highly-selective CO2 photoreduction to formic acid. Applied Catalysis B: Environmental, 327, 122418.
Honda, M., Tamura, M., Nakagawa, Y., Sonehara, S., Suzuki, K., Fujimoto, K. i., & Tomishige, K. (2013). Ceria‐catalyzed conversion of carbon dioxide into dimethyl carbonate with 2‐cyanopyridine. ChemSusChem, 6(8), 1341-1344.
Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., . . . Kreuz, C. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 9(2), 172-178.
Jeong, G. S., Kathalikkattil, A. C., Babu, R., Chung, Y. G., & Park, D. W. (2018). Cycloaddition of CO2 with epoxides by using an amino-acid-based Cu (II)–tryptophan MOF catalyst. Chinese Journal of Catalysis, 39(1), 63-70.
Jiang, W., Yang, J., Liu, Y. Y., Song, S. Y., & Ma, J. F. (2016). A Porphyrin‐Based Porous rtl Metal–Organic Framework as an Efficient Catalyst for the Cycloaddition of CO2 to Epoxides. Chemistry–A European Journal, 22(47), 16991-16997.
Kang, Z., Fan, L., & Sun, D. (2017). Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 5(21), 10073-10091.
Kumar, S., Verma, G., Gao, W. Y., Niu, Z., Wojtas, L., & Ma, S. (2016). Anionic metal–organic framework for selective dye removal and CO2 fixation. European Journal of Inorganic Chemistry, 2016(27), 4373-4377.
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450-1459.
Liang, L., Liu, C., Jiang, F., Chen, Q., Zhang, L., Xue, H., . . . Hong, M. (2017). Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature communications, 8(1), 1-10.
Liu, Y., Yang, Y., Sun, Q., Wang, Z., Huang, B., Dai, Y., . . . Zhang, X. (2013). Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS applied materials & interfaces, 5(15), 7654-7658.
North, M., Pasquale, R., & Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 12(9), 1514-1539.
Pescarmona, P. P. (2021). Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Current Opinion in Green and Sustainable Chemistry, 29, 100457.
Rabbani, M., Bathaee, H., Rahimi, R., & Maleki, A. (2016). Photocatalytic degradation of p-nitrophenol and methylene blue using Zn-TCPP/Ag doped mesoporous TiO2 under UV and visible light irradiation. Desalination and Water Treatment, 57(53), 25848-25856.
Rabbani, M., Heidari-Golafzani, M., & Rahimi, R. (2016). Synthesis of TCPP/ZnFe2O4@ ZnO nanohollow sphere composite for degradation of methylene blue and 4-nitrophenol under visible light. Materials Chemistry and Physics, 179, 35-41.
Sculley, J., Yuan, D., & Zhou, H.-C. (2011). The current status of hydrogen storage in metal–organic frameworks—updated. Energy & Environmental Science, 4(8), 2721-2735.
Sun, C. Y., Qin, C., Wang, C. G., Su, Z. M., Wang, S., Wang, X. L., . . . Wang, E. B. (2011). Chiral nanoporous metal‐organic frameworks with high porosity as materials for drug delivery. Advanced Materials, 23(47), 5629-5632.
Wei, N., Zhang, Y., Liu, L., Han, Z.-B., & Yuan, D.-Q. (2017). Pentanuclear Yb (III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion. Applied Catalysis B: Environmental, 219, 603-610.
Wu, K., Liu, C., Chen, Y., Jiang, H., Peng, Q., Chen, Y., . . . Zhan, L. (2023). Constructing asymmetric unsaturated copper coordination in Zinc (II)/Copper (I, II)-based metal-organic framework toward productive CO2-to-methanol photocatalytic conversion from CO2-capturing solution. Applied Catalysis A: General, 650, 118970.
Yang, Y., Hayashi, Y., Fujii, Y., Nagano, T., Kita, Y., Ohshima, T., . . . Mashima, K. (2012). Efficient cyclic carbonate synthesis catalyzed by zinc cluster systems under mild conditions. Catalysis Science & Technology, 2(3), 509-513.
Ye, L., Gao, Y., Cao, S., Chen, H., Yao, Y., Hou, J., & Sun, L. (2018). Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Applied Catalysis B: Environmental, 227, 54-60.
Yu, S.-S., Liu, X.-H., Ma, J.-G., Niu, Z., & Cheng, P. (2016). A new catalyst for the solvent-free conversion of CO2 and epoxides into cyclic carbonate under mild conditions. Journal of CO2 Utilization, 14, 122-125.
Zhai, G., Liu, Y., Lei, L., Wang, J., Wang, Z., Zheng, Z., . . . Huang, B. (2021). Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a Bi-based metal–organic framework. Acs Catalysis, 11(4), 1988-1994.
Zhang, H., Zhai, G., Lei, L., Zhang, C., Liu, Y., Wang, Z., . . . Dai, Y. (2022). Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. Journal of Colloid and Interface Science, 625, 33-40.