Catalytic Conversion of Carbon Dioxide by Metal-Organic Frameworks: an Effective Approach for CO2 Utilization

Document Type : Original Research Paper

Authors

Department of Chemistry, Iran University of Science and Technology, P.O. Box: 16846-13114, Tehran, Islamic Republic of Iran

Abstract

Due to the increase in carbon dioxide emission, there is a need for achieving efficient ways to reduce CO2 harmful effects. There are several strategies to mitigate atmospheric CO2 concentration. The catalytic cycloaddition of carbon dioxide with epoxides to provide cyclic carbonates employing metal-organic frameworks is a promising method for this purpose. Herein the application of two porous porphyrinic MOFs (Co-PMOF and Cu-PMOF) as catalysts in CO2 conversion was investigated. These MOFs demonstrated good crystallinity and porosity, providing them with two promising platforms to study CO2 conversion reactions. These heterogeneous porphyrin-based MOFs are catalytically efficient towards the chemical conversion of CO2 under moderate conditions because these MOF matrices contain a high density of active Lewis acidic and basic sites for activating CO2 and epoxide compounds. These MOFs exhibited high catalytic efficiency for the chemical fixation of CO2 at ambient temperature and solvent-free conditions. The reactions formed the proportionate cyclic carbonates in good yields. These products are valuable compounds in a variety of chemical fields.

Keywords

Main Subjects


Beyzavi, H., Klet, R. C., Tussupbayev, S., Borycz, J., Vermeulen, N. A., Cramer, C. J., . . . Farha, O. K. (2014). A hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. Journal of the American Chemical Society, 136(45), 15861-15864. 
Carrasco, S., Sanz-Marco, A., & Martín-Matute, B. (2019). Fast and robust synthesis of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2. Organometallics, 38(18), 3429-3435. 
Chen, A., Zhang, Y., Chen, J., Chen, L., & Yu, Y. (2015). Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. Journal of Materials Chemistry A, 3(18), 9807-9816. 
Das, R., Manna, S. S., Pathak, B., & Nagaraja, C. (2022). Strategic Design of Mg-Centered Porphyrin Metal–Organic Framework for Efficient Visible Light-Promoted Fixation of CO2 under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS applied materials & interfaces, 14(29), 33285-33296. 
Deng, Y., Liu, Y., Chen, Y., Cheng, L., Dai, W., & Ji, H. (2023). Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks. Applied Surface Science, 614, 156250. 
Ema, T., Miyazaki, Y., Koyama, S., Yano, Y., & Sakai, T. (2012). A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates. Chemical Communications, 48(37), 4489-4491. 
Feng, D., Chung, W.-C., Wei, Z., Gu, Z.-Y., Jiang, H.-L., Chen, Y.-P., . . . Zhou, H.-C. (2013). Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. Journal of the American Chemical Society, 135(45), 17105-17110. 
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An amine‐functionalized titanium metal–organic framework photocatalyst with visible‐light‐induced activity for CO2 reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. 
Gulati, S., Vijayan, S., Kumar, S., Harikumar, B., Trivedi, M., & Varma, R. S. (2023). Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coordination Chemistry Reviews, 474, 214853. 
He, C., Lu, K., & Lin, W. (2014). Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. Journal of the American Chemical Society, 136(35), 12253-12256. 
He, X., Gao, X., Chen, X., Hu, S., Tan, F., Xiong, Y., . . . Wei, F. (2023). Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active sites for highly-selective CO2 photoreduction to formic acid. Applied Catalysis B: Environmental, 327, 122418. 
Honda, M., Tamura, M., Nakagawa, Y., Sonehara, S., Suzuki, K., Fujimoto, K. i., & Tomishige, K. (2013). Ceria‐catalyzed conversion of carbon dioxide into dimethyl carbonate with 2‐cyanopyridine. ChemSusChem, 6(8), 1341-1344. 
Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., . . . Kreuz, C. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 9(2), 172-178. 
Jeong, G. S., Kathalikkattil, A. C., Babu, R., Chung, Y. G., & Park, D. W. (2018). Cycloaddition of CO2 with epoxides by using an amino-acid-based Cu (II)–tryptophan MOF catalyst. Chinese Journal of Catalysis, 39(1), 63-70. 
Jiang, W., Yang, J., Liu, Y. Y., Song, S. Y., & Ma, J. F. (2016). A Porphyrin‐Based Porous rtl Metal–Organic Framework as an Efficient Catalyst for the Cycloaddition of CO2 to Epoxides. Chemistry–A European Journal, 22(47), 16991-16997. 
Kang, Z., Fan, L., & Sun, D. (2017). Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 5(21), 10073-10091. 
Kumar, S., Verma, G., Gao, W. Y., Niu, Z., Wojtas, L., & Ma, S. (2016). Anionic metal–organic framework for selective dye removal and CO2 fixation. European Journal of Inorganic Chemistry, 2016(27), 4373-4377. 
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450-1459. 
Liang, L., Liu, C., Jiang, F., Chen, Q., Zhang, L., Xue, H., . . . Hong, M. (2017). Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature communications, 8(1), 1-10. 
Liu, Y., Yang, Y., Sun, Q., Wang, Z., Huang, B., Dai, Y., . . . Zhang, X. (2013). Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS applied materials & interfaces, 5(15), 7654-7658. 
North, M., Pasquale, R., & Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 12(9), 1514-1539. 
Pescarmona, P. P. (2021). Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Current Opinion in Green and Sustainable Chemistry, 29, 100457. 
Rabbani, M., Bathaee, H., Rahimi, R., & Maleki, A. (2016). Photocatalytic degradation of p-nitrophenol and methylene blue using Zn-TCPP/Ag doped mesoporous TiO2 under UV and visible light irradiation. Desalination and Water Treatment, 57(53), 25848-25856. 
Rabbani, M., Heidari-Golafzani, M., & Rahimi, R. (2016). Synthesis of TCPP/ZnFe2O4@ ZnO nanohollow sphere composite for degradation of methylene blue and 4-nitrophenol under visible light. Materials Chemistry and Physics, 179, 35-41. 
Sculley, J., Yuan, D., & Zhou, H.-C. (2011). The current status of hydrogen storage in metal–organic frameworks—updated. Energy & Environmental Science, 4(8), 2721-2735. 
Sun, C. Y., Qin, C., Wang, C. G., Su, Z. M., Wang, S., Wang, X. L., . . . Wang, E. B. (2011). Chiral nanoporous metal‐organic frameworks with high porosity as materials for drug delivery. Advanced Materials, 23(47), 5629-5632. 
Wei, N., Zhang, Y., Liu, L., Han, Z.-B., & Yuan, D.-Q. (2017). Pentanuclear Yb (III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion. Applied Catalysis B: Environmental, 219, 603-610. 
Wu, K., Liu, C., Chen, Y., Jiang, H., Peng, Q., Chen, Y., . . . Zhan, L. (2023). Constructing asymmetric unsaturated copper coordination in Zinc (II)/Copper (I, II)-based metal-organic framework toward productive CO2-to-methanol photocatalytic conversion from CO2-capturing solution. Applied Catalysis A: General, 650, 118970. 
Yang, Y., Hayashi, Y., Fujii, Y., Nagano, T., Kita, Y., Ohshima, T., . . . Mashima, K. (2012). Efficient cyclic carbonate synthesis catalyzed by zinc cluster systems under mild conditions. Catalysis Science & Technology, 2(3), 509-513. 
Ye, L., Gao, Y., Cao, S., Chen, H., Yao, Y., Hou, J., & Sun, L. (2018). Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Applied Catalysis B: Environmental, 227, 54-60. 
Yu, S.-S., Liu, X.-H., Ma, J.-G., Niu, Z., & Cheng, P. (2016). A new catalyst for the solvent-free conversion of CO2 and epoxides into cyclic carbonate under mild conditions. Journal of CO2 Utilization, 14, 122-125. 
Zhai, G., Liu, Y., Lei, L., Wang, J., Wang, Z., Zheng, Z., . . . Huang, B. (2021). Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a Bi-based metal–organic framework. Acs Catalysis, 11(4), 1988-1994. 
Zhang, H., Zhai, G., Lei, L., Zhang, C., Liu, Y., Wang, Z., . . . Dai, Y. (2022). Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. Journal of Colloid and Interface Science, 625, 33-40.