Alisoltani, T., shafiepour motlagh, m., ashrafi, k., & Habibian, M. (2020). Traffic scenarios on Sadr Overpass: A multi-criteria analysis considering air pollution. Modares Civil Engineering journal, 19(6), 103-113. from http://mcej.modares.ac.ir/article-16-32224-en.html.
Arhami, M., Hosseini, V., Shahne, M. Z., Bigdeli, M., Lai, A., & Schauer, J. J. (2017). Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmospheric Environment, 153, 70-82. https://doi.org/10.1016/j.atmosenv.2016.12.046.
Choi, D., Beardsley, M., Brzezinski, D., Koupal, J., & Warila, J. (2010). MOVES sensitivity analysis: the impacts of temperature and humidity on emissions. Paper presented at the US EPA–Proceedings from the 19th Annual International Emission Inventory Conference, Ann Arbor, MI. from https://gaftp.epa.gov/AIR/nei/ei_conference/EI20/session6/choi.pdf.
Ghadiri, Z., Rashidi, Y., & Broomandi, P. (2017). Evaluation Euro IV of effectiveness in transportation systems of Tehran on air quality: Application of IVE model. Pollution, 3(4), 639-653. https://doi.org/10.22059/POLL.2017.62779.
Ghaffarpasand, O., Talaie, M. R., Ahmadikia, H., Khozani, A. T., Shalamzari, M. D., & Majidi, S. (2021). Real-world evaluation of driving behaviour and emission performance of motorcycle transportation in developing countries: A case study of Isfahan, Iran. Urban Climate, 39, 100923. https://doi.org/10.1016/j.uclim.2021.100923.
Gupta, I., Kandari, S., Rajput, A., Asif, M., & Singh, A. (2013). Multipoint Fuel Injection System. International Journal of Engineering Research & Technology, 2(11), 642-647. h https://doi.org/10.17577/IJERTV2IS110123.
Hall, D. L., Anderson, D. C., Martin, C. R., Ren, X., Salawitch, R. J., He, H., Canty, T. P., et al. (2020). Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 117558. https://doi.org/10.1016/j.atmosenv.2020.117558.
Hartfield, G., Blunden, J., & Arndt, D. S. (2018). State of the Climate in 2017. Bulletin of the American Meteorological Society, 99(8), Si-S310. https://doi.org/10.1175/2018BAMSStateoftheClimate.1.
Hassani, A., & Hosseini, V. (2016). An assessment of gasoline motorcycle emissions performance and understanding their contribution to Tehran air pollution. Transportation research part D: Transport and environment, 47, 1-12. https://doi.org/10.1016/j.trd.2016.05.003.
Hoseinifar, S. E., Shafiepour Motlagh, M., Ashrafi, K., & Ahadi, M. R. (2023). Sensitivity Analysis of Hazardous Air Pollutants Emission from Passenger Cars to Traffic, Geographic and Environmental Parameters (Case Study: Tehran). Road, 31(114), 33-52. https://doi.org/10.22034/ROAD.2022.356276.2077.
Iran Meteorological Organization. (2020). “Specialized products and services weather”. Analytical reports & climatic data. from https://www.irimo.ir/eng/wd/720-Products-Services.html.
ISSRC. (2008). International Sustainable Systems Research Center, IVE Model User Manual, Version 2.0. from http://www.issrc.org/ive/downloads/manuals/UsersManual.pdf.
Jung, S., Lee, M., Kim, J., Lyu, Y., & Park, J. (2011). Speed‐dependent emission of air pollutants from gasoline‐powered passenger cars. Environmental Technology, 32(11), 1173-1181. https://doi.org/10.1080/09593330.2010.505611.
Koupal, J., & Palacios, C. (2019). Impact of new fuel specifications on vehicle emissions in Mexico. Atmospheric Environment, 201, 41-49. https://doi.org/10.1016/j.atmosenv.2018.12.028.
Lindsey, R., & Dahlman, L. (2020). Climate change: Global temperature. Climate. gov, 16. from https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature.
Luján, J. M., Climent, H., García-Cuevas, L. M., & Moratal, A. (2018). Pollutant emissions and diesel oxidation catalyst performance at low ambient temperatures in transient load conditions. Applied Thermal Engineering, 129, 1527-1537. https://doi.org/10.1016/j.applthermaleng.2017.10.138.
Luján, J. M., Climent, H., Ruiz, S., & Moratal, A. (2019). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. International Journal of Engine Research, 20(8-9), 877-888. https://doi.org/10.1177/1468087418792353.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2. https://doi.org/10.1017/9781009157896.
Ng, E. C., Huang, Y., Hong, G., Zhou, J. L., & Surawski, N. C. (2021). Reducing vehicle fuel consumption and exhaust emissions from the application of a green-safety device under real driving. Science of the Total Environment, 793, 148602. https://doi.org/10.1016/j.scitotenv.2021.148602.
Pekula, N., Kuritz, B., Hearne, J., Marchese, A., & Hesketh, R. (2003). The effect of ambient temperature, humidity, and engine speed on idling emissions from heavy-duty diesel trucks. SAE transactions, 148-158. https://doi.org/10.4271/2003-01-0290.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232. https://doi.org/10.1016/j.envsoft.2016.02.008.
Pinto, J. A., Kumar, P., Alonso, M. F., Andreão, W. L., Pedruzzi, R., dos Santos, F. S., Moreira, D. M., et al. (2020). Traffic data in air quality modeling: a review of key variables, improvements in results, open problems and challenges in current research. Atmospheric Pollution Research, 11(3), 454-468. https://doi.org/10.1016/j.apr.2019.11.018.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., et al. (2008). Global sensitivity analysis: the primer: John Wiley & Sons. https://doi.org/10.1111/j.1751-5823.2008.00062_17.x.
Shafie-Pour, M., & Tavakoli, A. (2013). On-road vehicle emissions forecast using IVE simulation model. International Journal of Environmental Research, 7(2), 367-376. https://doi.org/10.22059/IJER.2013.614.
Shahbazi, H., Reyhanian, M., Hosseini, V., & Afshin, H. (2016). The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission Control Science and Technology, 2(1), 44-56. https://doi.org/10.1007/s40825-015-0031-x.
Shrestha, S. R., Oanh, N. T. K., Xu, Q., Rupakheti, M., & Lawrence, M. G. (2013). Analysis of the vehicle fleet in the Kathmandu Valley for estimation of environment and climate co-benefits of technology intrusions. Atmospheric Environment, 81, 579-590. https://doi.org/10.1016/j.atmosenv.2013.09.050.
Tehran Air Quality Control Company. (2020). analysis of gasoline of Tehran’s filling stations. from https://air.tehran.ir/Default.aspx?tabid=957.
Transport and Traffic Deputy of Tehran Municipality. (2020). Gozideye āmāre haml va naghl va traffic Tehran [Excerpt of statistics on transport and traffic in Tehran]. Tehran Municipality, 1-16. from http://trafficorg.tehran.ir.
Zalakeviciute, R., López-Villada, J., & Rybarczyk, Y. (2018). Contrasted effects of relative humidity and precipitation on urban PM2. 5 pollution in high elevation urban areas. Sustainability, 10(6), 2064. https://doi.org/10.3390/su10062064.
Zhang, Q., Fan, J., Yang, W., Ying, F., Bao, Z., Sheng, Y., Lin, C., et al. (2018). Influences of accumulated mileage and technological changes on emissions of regulated pollutants from gasoline passenger vehicles. Journal of Environmental Sciences, 71, 197-206. https://doi.org/10.1016/j.jes.2018.03.021.