Chemical Fraction and Health Effect of Size Segregate PM at National Highway of Northern India

Document Type : Original Research Paper

Authors

1 Department of Chemistry GLA University Mathura, 281406 India

2 Department of Chemistry, Institute of Basic Science, Dr. B. R. Ambedkar University, Agra 282002 India

3 Department of Environmental Science, The Institute of Science Dr. Homi Bhabha State University, Mumbai 400032 India

Abstract

Sampling was conducted on Agra-Delhi national highway NH-2. Samples were collected with the help of Sioutas cascade impactor. During the sampling, PM1.0-0.5 (255.85µg/m3) was higher than PM2.5-1.0 (218.96µg/m3). The AQI value for the average PM2.5 concentration also exceeded the severe AQ limit (401-500). These results showed that PM2.5 pollution has a significant influence on the site as a result of a variety of anthropogenic activities. During the summer season, for PM1.0-0.5 and PM2.5-1.0 highest values (µg/m3) of metals followed the same trend and it was observed as Mg(6.52)> Ca(5.89)> Al(3.64)> while for PM2.5-1.0 it was as Mg(10.12)> Ca(9.5)> Al(5.95) respectively. At roadside, most of these metals are emitted from the resuspension of dust and vehicle activities which causes serious diseases to the human being. Cd, Cr, Cu, Pb, and Zn were highly enriched at national highway sampling sites, highlighting the crustal source, which has a major impact on metals concentration, followed by anthropogenic sources. The present research was conducted to find out the concentration level of metals in PM2.5-1.0 and PM1.0-0.5 
particles in Agra, India to find out the health risk assessment at highway site.From the results, it was observed that all metals bound to larger size PM has high bioavailability. From the health risk assessment, it was found that all the metals bound smaller size particles showed higher HQ except in the case of Ni and Al. Cr, Pb showed carcinogenic risk to children and adults in both size fraction of PM except in the case of Ni. 

Keywords

Main Subjects


Abbasi, M. N., Ahmad, I., & Tufail, M. (2012). Dispersion of Cd, Cr, Cu, Ni, Pb and Zn particles in a turbulent air flow. Journal of World Applied ciences, 20(6); 864-869. 10.5829/idosi.wasj.2012.20.06.1962
Aikpokpodion, P. E., Lajide, L., & Aiyesanmi, A. F. (2012). Metal ractionation in soils collected from selected cocoa plantations in ogun state, Nigeria. World Applied Sciences Journal, 20(5); 628-636. 10.5829/idosi.wasj.2012.20.05.2769
Ambade, B. (2014). Seasonal variation and sources of heavy metals in hilltop of Dongargarh, Central India. Urban Climate, 9; 155-165. https://doi.org/10.1016/j.uclim.2014.08.001
Arruti, A., Fernández-Olmo, I., & Irabien, Á. (2010). Evaluation of the contribution of local sources to trace metals levels in urban PM2. 5 and PM10 in the Cantabria region (Northern Spain). Journal of environmental monitoring, 12(7); 1451-1458. 10.1039/b926740a
Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J. ..., & Dandona, L. (2019). The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. The Lancet Planetary Health, 3(1); e26-e39. https://doi.org/10.1016/S2542-5196(18)30261-4
Celo, V., & Dabek-Zlotorzynska, E. (2010). Concentration and source origin of trace metals in PM2.5 collected at selected Canadian sites within the Canadian   national air pollution surveillance program. In Urban Airborne Particulate Matter (pp. 19-38). Springer, Berlin, Heidelberg.
Chen, C. H., Wu, C. D., Chiang, H. C., Chu, D., Lee, K. Y., Lin, W. Y., Yeh, J.I., Tsai, K.W., & Guo, Y. L. L. (2019). The  effects  of  fine  and  coarse particulate matter on lung function among the elderly. Scientific Reports, 9(1); 1-8. https://doi.org/10.1038/s41598-019-51307-5
Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., uenzli, N., Gutschmidt, K., Pope, C.A., Romieu, I., Samet, J.M., & Smith, K. R. (2004). Mortality impacts of urban air pollution. In comparative quantification of health risks: Global and regional burden of disease due to
selected major risk factors, Eds. M. Ezzati, AD, Lopez, A. Rodgers, and CUJL
Murray, vol. 2, pp. 1353-1433, Geneva: World Health Organisation. Geneva: World
Health Organization
Colbeck, I., Nasir, Z. A., Ahmad, S., & Ali, Z. (2011). Exposure to PM10, PM2. 5, PM1 and carbon monoxide on roads in Lahore, Pakistan. Aerosol and Air Quality Research, 11(6); 689-695.
CPCB. (2015). National air quality index report; central pollution control board ministry of
environment, forest and climate change 6.
D’Ippoliti, D., Forastiere, F., Ancona, C., Agabiti, N., Fusco, D., Michelozzi, P., & Perucci, C. A. (2003). Air pollution and myocardial infarction in Rome:  case-crossover analysis. Epidemiology, 14(5); 528-535. 
Desboeufs, K. V., Sofikitis, A., Losno, R., Colin, J. L., & Ausset, P. (2005). Dissolution and solubility of trace metals from natural and anthropogenic erosol particulate matter. Chemosphere, 58(2); 195-203. 10.1016/j.chemosphere.2004.02.025
Espinosa, A. F., odr uez, M. T., de la osa, F., & nchez, C. 2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36(5); 773-780. https://doi.org/10.1016/S1352- 310(01)00534-9
Fomba, K. W., van Pinxteren, D., Müller, K., Spindler, G., & Herrmann, H. (2018). Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment, 176; 60-70. https://doi.org/10.1016/j.atmosenv.2017.12.024
Gallus, S., Negri, E., Boffetta, P., McLaughlin, J. K., Bosetti, C., & La Vecchia, C. (2008). European studies on long-term exposure to ambient particulate matter and lung cancer. European Journal of Cancer
Prevention, 17(3); 191-194. 10.1097/CEJ.0b013e3282f0bfe5
Gao, H. O. (2021). Particulate matter exposure at a densely populated urban traffic intersection and crosswalk. Environmental Pollution, 268, 115931. https://doi.org/10.1016/j.envpol.2020.115931
Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of eophysics, 38(4); 513-543. https://doi.org/10.1029/1999RG000078
Health Effects Institute. Burden of Disease Attributable to Major Air Pollution Sources in India.https:// www. healt heffe cts. org/ system/ files/ GBD- MAPS- SpecR ep21- India- revis ed_0. pdf. (2018).  
Hieu, N. T., & Lee, B. K. (2010). Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmospheric Research, 98(2-4); 526-537. https://doi.org/10.1016/j.atmosres.2010.08.019
Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012). ioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57; 146-152. https://doi.org/10.1016/j.atmosenv.2012.04.056
Izhar, S., Goel, A., Chakraborty, A., & Gupta, T. (2016). Annual trends in occurrence of submicron particles in ambient air and health risk posed by article bound metals. Chemosphere, 146; 582-590. https://doi.org/10.1016/j.chemosphere.2015.12.039
Jiang, S. Y., Kaul, D. S., Yang, F., Sun, L., & Ning, Z. (2015). Source apportionment and water solubility of metals in size segregated particles in urban environments. Science of the Total Environment, 533; 347-355. https://doi.org/10.1016/j.scitotenv.2015.06.146
Julien, C., Esperanza, P., Bruno, M., & Alleman, L. Y. (2011). Development of n in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. Journal of Environmental Monitoring, 13(3); 621-630. https://doi.org/10.1039/C0EM00439A
Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., Rossi, G., Zmirou, D., Ballester, F., Boumghar, A., & Anderson, H. R. (2001). Confounding and effect modification in the shortterm effects of ambient particles on total mortality: results from 29 European
cities within the APHEA2 project. Epidemiology, 12; 521-531.
Khairiah, J., Tharmendren, M. S. M., Habibah, J., Zulkefly, H., Kamal, W. W., & Ismail, B. S. (2012). Heavy metal content in paddy soils of Ketara, Besut, Terengganu, Malaysia. World Applied Sciences Journal, 19(2); 183-191. 10.5829/idosi.wasj.2012.19.02.3687
Khairy, M. A., Barakat, A. O., Mostafa, A. R., & Wade, T. L. (2011). Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchemical Journal, 97(2); 234-242. https://doi.org/10.1016/j.microc.2010.09.012
Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M...., & Chung, J. X. (2016). Fine particulate matter in the tropical environment: onsoonal effects, source apportionment, and health risk
assessment. Atmospheric Chemistry and Physics, 16(2); 597-617. https://doi.org/10.5194/acp-16-597-2016
Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2. 5 and PM10 particles and seasonal variations in urban nd rural environment of Agra, India. Science of the Total
Environment, 407(24); 6196-6204. https://doi.org/10.1016/j.scitotenv.2009.08.050
Lai, A. C. K. (2002). Particle deposition indoors: a review. Indoor air, 12(4); 211-214. https://doi.org/10.1034/j.1600-0668.2002.01159.x
Lee, B. K., & Hieu, N. T. (2011). Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol and Air Quality Resarch, 11(6); 679-688. 10.4209/aaqr.2010.10.0089
Li, L. N., Zhang, Y., Li, J. H., Zhou, X., & Zhao, J. (2009, June). The Health Risk Assessment of Heavy Metals in the Circumstance of Dust in Shanghai Urban Parks. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (pp. 1-6). IEEE. 978-1-4244-2902-8/09.
Masih, J., Nair, A., Gautam, S., Singhal, R. K., Basu, H., Dyavarchetty, S., Uzgare, A., Tiwari, R., & Taneja, A. (2019). Chemical characterization of submicron particles in indoor and outdoor air at two different microenvironments in the western part of India. SN Applied Sciences, 1(2), 1-12. https://doi.org/10.1007/s42452-019-0164-6
Michelson I., & Tourin B. (1967). Household Costs of Air Pollution- Control of Air Pollution, Draft reports, PHS Contracts, PH 86-67-221, Environmental Health and Safety Associates, New Rochelle, New York.
MoEFCC, NCAP National Clean Air Programme, Government of India, 2019.
Nelin, T. D., Joseph, A. M., Gorr, M. W., & Wold, L. E. (2012). Direct and indirect effects of particulate matter on the cardiovascular system. Toxicology Letters, 208(3); 293-299. https://doi.org/10.1016/j.toxlet.2011.11.008
Niu, L., Ye, H., Xu, C., Yao, Y., & Liu, W. (2015). Highly time-and size-resolved
fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere, 119; 112-121. https://doi.org/10.1016/j.chemosphere.2014.05.062
Noonan, C. W., & Ward, T. J. (2007). Environmental tobacco smoke, woodstove heating and risk of asthma symptoms. Journal of Asthma, 44(9); 35-738. https://doi.org/10.1080/02770900701595675
Norris, G., YoungPong, S. N., Koenig, J. Q., Larson, T. V., Sheppard, L., & Stout, J. W. (1999). An association between fine particles and asthma emergency department visits for children in Seattle. Environmental Health Perspectives, 107(6); 489-493. https://doi.org/10.1289/ehp.99107489
Pandey, P., Patel, D. K., Khan, A. H., Barman, S. C., Murthy, R. C., & Kisku, G. C. (2013). Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. Journal of Environmental Science and Health, Part
A, 48(7); 730-745. https://doi.org/10.1080/10934529.2013.744613
Pant, P., Shi, Z., Pope, F. D., & Harrison, R. M. (2017). Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: Trace metals and organic molecular markers. Aerosol and air quality research, 17(1); 117-130. 10.4209/aaqr.2016.01.0040
Parveen, R., Saini, R., & Taneja, A. (2018). Chemical characterization and health risk
assessment of soil and airborne particulates metals and metalloids in populated
semiarid region, Agra, India. Environ Geochem Health, 40(5); 2021–2035. https://doi.org/10.1007/s10653-016-9822-4
Penner, J. E., Eddleman, H., & Novakov, T. (1993). Towards the development of a global inventory for black carbon emissions. Atmospheric Environment. Part A. General Topics, 27(8); 1277-1295. https://doi.org/10.1016/0960-1686(93)90255-W
Pope III, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term xposure to particulate air pollution: epidemiological evidence of general athophysiological pathways of disease. Circulation, 109(1); 71-77. https://doi.org/10.1161/01.CIR.0000108927.80044.7F
Prüss-Üstün A., Mathers C., Woodward A., & Corvalán C., (2003). Introduction and methods: assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization (Environmental Burden of Disease series, No. 1).
Purohit, P., Amann, M., Kiesewetter, G., Rafaj, P., Chaturvedi, V., Dholakia, H. H...., & Sander, R. (2019). Mitigation pathways towards national ambient air quality standards in India. Environment international, 133, 105147. https://doi.org/10.1016/j.envint.2019.105147
Rajaram, B. S., Suryawanshi, P. V., Bhanarkar, A. D., & Rao, C. V. C. (2014). Heavy metals contamination in road dust in Delhi city, India. Environmental Earth Sciences, 72; 3929-3938. 10.1007/s12665-014-3281-y
Rahn, K. A. (1976). The chemical composition of the atmospheric aerosol. raduate School of Oceanography, University of Rhode Island. 59. 
Ramond, A., Godin-Ribuot, D., Ribuot, C., Totoson, P., Koritchneva, I., Cachot, S., Levy, P., & Joyeux-Faure, M. (2013). Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundamental Clinical Pharmacology, 27(3); 252-261. https://doi.org/10.1111/j.1472-8206.2011.01015.x
Rohra, H., Tiwari, R., Khandelwal, N., & Taneja, A. (2018a). Mass distribution nd health risk assessment of size segregated particulate in varied indoor icroenvironments of Agra, India-A case study. Urban climate, 24; 139-152. https://doi.org/10.1016/j.uclim.2018.01.002
Rohra, H., Tiwari, R., Khare, P., & Taneja, A. (2018b). Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultrafine ranges in residential areas of orthern India. Science of The Total Environment, 631; 1383-1397. https://doi.org/10.1016/j.scitotenv.2018.03.095
Sah, D., Verma, P. K., Kumari, K. M., & Lakhani, A. (2019). Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environmental Geochemistry and Health, 41(3); 1445-1458. https://doi.org/10.1007/s10653-018-0223-8
Srivastava, A., & Jain, V. K. (2007). Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere, 68(3); 579-589. https://doi.org/10.1016/j.chemosphere.2006.12.046
Shrivastava, M., Ghosh, A., Bhattacharyya, R., & Singh, S. D. (2018). Urban pollution in India. John Wiley & Sons, Ltd.: Chichester, UK, 341-356.
Singh, M., Misra, C., & Sioutas, C. (2003). Field evaluation of a personal cascade impactor sampler (PCIS), Atmospheric Environment, 37; 4781-4793. https://doi.org/10.1016/j.atmosenv.2003.08.013
Sioutas, C. (2004). Development of new generation personal monitors for fine particulate matter (PM) and its metal content, Mickley Leland National rban Air Toxics Research Centre, research report no. 2. 
Smichowski, P. (2013). Fractionation and speciation analysis of antimony in atmospheric aerosols and related matrices. Speciation Studies in Soil, Sediment and Environmental Samples, 341.
Spengler, J. D., Keeler, G. J., Koutrakis, P., Ryan, P. B., Raizenne, M., & Franklin, C. A. (1989). Exposures to acidic aerosols. Environmental Health Perspectives, 79; 43-51. https://doi.org/10.1289/ehp.897943
Taneja, A., Saini, R., & Masih, A. (2008). Indoor air quality of houses located in the urban environment of Agra, India. Annals of the New York Academy of Sciences, 1140(1); 228-245. https://doi.org/10.1196/annals.1454.033
Taner, S., Pekey, B., & Pekey, H. (2013). Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Science of the total Environment, 454; 79-87. https://doi.org/10.1016/j.scitotenv.2013.03.018
Tidblad, J., Kucera, V., & Hamilton, R. (2009). The effects of air pollution on cultural heritage (Vol. 6, pp. 10-12). J. Watt (Ed.). Berlin, Germany: Springer.
Tiwari, R., Botle, A., Kumar, R., Singh, P. P., & Taneja, A. (2023). Morphology and health risk assessment of potential toxic elements in size segregated PM at traffic intersection in Northern India. Journal of Trace Elements and Minerals, 4; 100074. https://doi.org/10.1016/j.jtemin.2023.100074
Tiwari, R., Botle, A., Bhat, S. A., Singh, P. P., & Taneja, A. (2022). Chemical Characterization and Health Risk Assessement of Size Segreated PM at World Heritage Site, Agra. Cleaner Chemical Engineering, 3; 100049. https://doi.org/10.1016/j.clce.2022.100049
Tiwari, R., Singh, P. P., & Taneja, A. (2020). Chemical characterization of particulate matter at traffic prone roadside environment in Agra, India. Pollution, 6(2); 237-252. https://doi.org/10.22059/poll.2019.289418.683
Tiwari, R., Singh, P. P., & Taneja, A. (2020). Health risk assessment in size segregated PM at urban traffic site in Agra. Indian Journal of Environmental Protection, 40(9); 934-940.
Tolbert, P.E., Mulholl, J.A., Maclntosh, D.D.D, Xu, F., Daniels, D., Devine, O.J., Carlin, B.P., Klein, M., Dorley, J., Butler, A.J., Nordenberg, D.F., Frumkin, H., Ryan, P.B., & White, M.C. (2000). Air quality and pediatric Emergency Room visit for Asthma in Atlanta, Georgia, USA. Atmospheric
Journal Epidemiology, 51; 798-810. https://doi.org/10.1093/oxfordjournals.aje.a010280
Tsai, S. S., Goggins, W. B., Chiu, H. F., & Yang, C. Y. (2003). Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke, 34(11); 2612-2616. https://doi.org/10.1161/01.STR.0000095564.33543.64
USEPA, 2009. Risk Assessment Guidance for Superfund: Volume I-Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). (WashingtonD.C.).
USEPA. References dose (RfD): description and use in health risk assessments. Background document 1A, Integrated Risk Information System (IRIS); 1993.
Varshney, P., Saini, R., & Taneja, A. (2016). Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study. Environmental Geochemistry and Health, 38(2); 593-605. 10.1007/s10653-015-9745-5
Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et cosmochimica Acta, 59(7); 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2 WHO (2002), World Health Report: Reducing risk, promoting healthy life. Geneva, World Health Organization. http:/www.who.int/whr.
World Health Organization. 7 million premature deaths annually linked to air pollution: 2014 https://www.who.int/mediacentre/news/releases/2014/airpollution/en/. Accessed 26 July 2016.
WHO, World Health Organization. Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, 2006.
World Health Organisation.Country estimates on air pollution exposure and health impact. https:// www. who. int/ news/ item/ 27- 09- 2016- who- relea ses- count ry- estim ates- on- air- pollu tion- expos ure- and- health- impact. (2016)
Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408(4); 726-733. https://doi.org/10.1016/j.scitotenv.2009.10.075