Gamma Radiation Profile of the High Background Radiation Area along Southwest Coastal India and its Neighbourhood

Document Type : Original Research Paper

Authors

1 Centre for Advanced Research in Physical Science, Department of Physics, Fatima Mata National College (Autonomous), Kollam, 691001, India

2 Postgraduate and Research Department of Physics, Christian College, Chengannur-689122, India

3 Department of Applied Physics, The Papua New Guinea University of Technology, Lae, Papua New Guinea

Abstract

Radioactive contamination of the earth’s biosphere has always been a source of concern. From the health point of view, radiation exposure and dose delivered to human beings are of prime importance. Certain parts of coastal southwest districts of the state of Kerala in India namely Thiruvananthapuram (Trivandrum), Kollam (Quilon) and Alappuzha (Alleppey) are known high background radiation areas (HBRA) owing to the presence of rich quantities of thorium and uranium. Surface soil samples from these districts' HBRAs and adjoining regions were studied for their primordial radionuclide levels using NaI(Tl) based gamma-ray spectrometry. Specific activities of 226Ra, 232Th and 40K nuclides in soil samples from the whole study area were between 4.7 Bq/kg to 130 Bq/kg, 6.5 Bq/kg to 611 Bq/kg and 101 Bq/kg to 1852 Bq/kg, respectively. Important dosimetric parameters namely radium equivalent activity (Raeq), absorbed gamma dose (D), Indoor and outdoor Annual Effective Dose equivalents (AEDin & AEDout), internal and external hazard indices (Hin & Hex) for gamma exposure, and Excess Lifetime Cancer Risk (ELCR) were also determined to assess probable health effects on human beings residing in these regions. A comparison of average specific radioactivities and average indoor annual effective doses between the HBRA and Normal background Radiation Area (NBRA) is presented. Results show that the neighbouring regions have considerably lower radiation dosimetric parameters. 

Keywords

Main Subjects


Abedin, M. J., & Khan, R. (2022). Primordial radionuclides in the dust samples from the
educational institutions of central Bangladesh: radiological risk assessment, 
Heliyon, 8(11), 11446. doi: 10.1016/j.heliyon. 2022.e11446
Aközcan, S. (2014). Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environ. Earth Sci., 71 (10), 4611-4614.
Aliyu, A. S., & Ramli, A. T. (2015). The world’s high background natural radiation areas (HBNRAs) revisited: A broad overview of the dosimetric, epidemiological and radiobiological issues. Radiat. Meas., 73, 51-59.
Amma, J. P., Nair, R. A., Nair, R. R. K., Hoel, D. G., Akiba S. Nakamura, S & Endo, K. (2021). Background Radiation and Cancer Excluding Leukemia in Kerala, India –Karunagappally Cohort Study. Radiat. Environ. Med.,10, 2, 74–81
Anitha, J., Joseph, S., Rejith, R., & Sundararajan, M. (2020). Monazite chemistry and its distribution along the coast of Neendakara–Kayamkulam belt, Kerala, India. SN Appl. Sci., 2, 812. https://doi.org/10.1007/s42452-020-2594-6
Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., & Bradley, D. A. (2016). Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh. Indoor Built Environ., 25(3),541-550.
BEIR VII. Biological Effects of Ionizing Radiation (BEIR) VII Report. (2006). Health risks from exposure to low levels of ionizing radiation. Washington, DC: The National Academies Press.
Belivermis, M., Kılıç, Ӧ., Çotuk, Y., & Topcuoğlu, S. (2010). The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ. Monit. Assess., 163(1-4), 15-26.
Beretka, J., and Matthew, P.J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health phys., 48(1), 87-95.
Chhangte, L.Z., Vanramlawma, H.,   Rohmingliana, P.C., Sahoo, B. K., Sapra, B. K., 
Rosangliana, B. Z., & Pachuau, Z. (2018). Measurement of primordial radionuclides 
in soils and building materials from Mizoram, India, Proceedings of the Mizoram 
Science Congress (MSC 2018) - Perspective and Trends in the Development of Science 
Education and Research. 10.2991/msc-18.2018.31
Clark-Carter, D. (2010). Measures of Central Tendency, International Encyclopedia of Education (Third Edition).
Done, L., & Loan, M. R. (2016). Minimum Detectable Activity in gamma spectrometry and its 
use in low level activity measurements. Appl, Radiat. isotopes, 114, 28-32.
DOI: 10.1016/j.apradiso.2016.05.004
Eisenbud, M and Gesell, T. (1997). Environmental Radioactivity from Natural, Industrial, and
Military Sources. San Diego, CA: Academic. 
EPA, United States Environmental Protection Agency, September 29, 2022. 
Ezekiel, A. O. (2017). Assessment of excess lifetime cancer risk from gamma radiation levels in 
Effurun and Warri city of Delta state, Nigeria. J. Taibah University for Science, 
11,3,367-380.
FEPA (Federal Environmental Protection Agency) 1991: National Guidelines and Standards for Industrial Effluents, Gaseous Emissions and Hazardous Waste Management in Nigeria: Interim Effluent Limitation Guidelines in Nigeria for all Categories or Industries. FEPA (Nigeria) Official Gazette, Nigeria, 1991 (No. 58).
Ghiassi-Nejad, M., Zakeri, F., Assaei, R. G., & Kariminia, A. (2004). Long-term immune and cytogenetic effects of high-level natural radiation on Ramsar inhabitants in Iran. J. Environ. Radioact., 74,107–116.
Hendry, J. H., Simon, S. L., Wojcik, A., Sohrabi, M., Burket, W., Cardis, E., Laurier, D., 
Tirmarche, M., & Hayata, I. (2009). Human exposure to high natural background radiation: 
what can it teach us about radiation risks? J. Radiol. Prot., 29(0), A20-A42.
ICRP, 60. (1990). Recommendations of the International Commission on Radiological Protection.
ICRP Publication 60. Ann. ICRP 21 (1-3).      
https://www.icrp.org/publication.asp?id=icrp%20publication%2060
Jibiri, N. N., Farai, I. P., & Alausa S.K. (2007). Activity concentrations of 226 Ra, 228 Th, and 40 K in different food crops from a high background radiation area in Bitsichi, Jos Plateau, Nigeria. Radiat. Environ. Biophys., 46 (1), 53-59.
Khandaker, M. U., Jojo, P. J., Kassim, H. A., & Amin Y. M. (2012). Radiometric analysis of construction materials using HPGe gamma-ray spectrometry. Radiat. Prot. Dosim., 152(1-3), 33-37. 
Khandaker, M. U, Jojo, P. J., & Kassim, H. A. (2012). Determination of Primordial
Radionuclides in Natural Samples Using HPGe Gamma-Ray Spectrometry. APCBEE
Procedia 1,187 – 192.
Kolo, M. T., Aziz, S. A. B. A., Khandaker, M. U., Asaduzzaman, K., & Amin Y. M. (2015). Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia. Environ. Sc. Poll. Res., 22(17),13127-13136.
Leuangtakoun, S., Loat, B. V., Hong, B. T., Thang, D. D., & Singsoupho, S. (2019). 
Assessment of Natural Radioactivity and Associated Radiation Hazards in Soils samples
from Khammuan Province, Laos. VNU Journal of Science: Mathematics – Physics,
35,2,22-31. https//doi.org/ 10.25073/2588-1124/vnumap.4318
Lubin, J. H. (2002). The potential for bias in Cohen’s ecological analysis of lung cancer and residential radon. J. Radiol. Prot., 22,141–148.
Mehra, R., Kaur, S., Chand, S. Charan, C., & Mehta, M.  (2021). Dosimetric assessment of
primordial radionuclides in soil and groundwater of Sikar district, Rajasthan. J. Radioanal.
Nucl. Chem., 330, 1605– 1620. https://doi.org/10.1007/s10967-021-07998-0
Mohammed, R. S., & Ahmed, R. S. (2017). Estimation of excess lifetime cancer risk and radiation 
hazard indices in southern Iraq. Environ Earth Sci., 76,303.
Moriones, C. R., Duran, E. B., & Cruz, F. M. de la. (1989). Primordial radionuclides in soil and 
their contributions to absorbed dose rate in air. Nucleus (Quezon City), 27, 27-38.    
CODEN NCLSB.
Nurul, A., Abedin, J., Rahman, M. M., Miah, M. H., Siddique, N., Kamal, M., Chowdhury, M. I., 
Sulieman, A. A. M., Faruque, M. R. I., Khandakher, M. U., Bradley, D. A. and Alsubaie,
A. (2021). Radionuclides Transfer from Soil to Tea Leaves and Estimation of
Committed Effective Dose to the Bangladesh Populace. Life., 11(4), 282. 
https://doi.org/10.3390/life11040282
Purnama, D.S., & Damayanti, T. (2020). Determination of internal and external hazard index of natural radioactivity in well water samples. J. Phys.: Conf. Ser., 1436, 012090.
Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Jebakumar, J. P. P., Vijayalakshmi, I., Vijayagopal, P., & Venkatraman B. (2015). Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar. Pollut. Bull., 97(1-2), 419-430.
Santos, I. R., Burnett, W. C., & Godoy, J. M. (2008). Radionuclides as Tracers of Coastal Processes in Brazil: Review, Synthesis and Perspectives. Braz. J. Oceanogr., 56(2), 115–131.
Shetty, P. K., Narayana, Y., & Rajashekara, K. M. (2011). Depth Profile Study of Natural Radionuclides in the Environment of Coastal Kerala. J. Radioanal. Nucl. Ch., 290, 159–163.
Shoeib, M. Y., & Thabayneh, K.M. (2014). Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J. Radiat. Res. Appl. Sc., 7 (2),174-181.
Sohrabi, M., & Esmaeli, A. R. (2002). New Public Dose Assessment of Elevated Level Natural Radiation Areas of Ramsar (Iran) For Epidemiological Studies. Editors – Burkhart, W., Sohrabi, M., & Bayer, A., Amsterdam, Elsevier. 15–24.
Sunta, C. M. (1993). Proc. Int. Conf. on High Level Natural Radiation Areas, Ramsar Iran. Editors
– Sohrabi, M., Ahmed, J. U., & Durrani, S. A., International Atomic Energy Agency,
Vienna, 71–86. 
Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S. and Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact., 100 (1), 49-53.
Thabayneh, K. M., & Jazzar, M. M. (2013). Radioactivity levels in plant samples in Tulkarem district, Palestine and its impact on human health. Radiat. Prot.Dosim., 153(4), 467-474.
Thampi, M. V., Cheriyan, V. D., Kurien, C. J., Ramachandran, E. N., Karuppasamy, C. V., Koya,
P. K., Birajalaxmi, D., George, K. P., Rajan, V. K., & Chauhan, P. S. (2002). Cytogenetic
studies in the high-level natural radiation areas of Kerala. In: High Levels of Natural
Radiation and Radon areas: Radiation Dose and Health Effects.  Editord – Burkhart, W.,
Sohrabi, M.  & Bayer, A. Amsterdam: Elsevier, 207–211. 
Thomas, J. R., Sreejith, M. V., Usha, K. A., Sahu, S. K., Shetty, P. G., Swarnakar, M.,  Takale, R.     A.,  Gauri, P., &  Aravindakumar, C. T. (2022). Outdoor and indoor natural background gamma radiation across Kerala, India. Environ. Sci. Atmos., 2, 65-72. Doi:10.1039/DIEA00033K
UNSCEAR 1988: United Nations Scientific Committee on the Effects of Atomic Radiation - Sources, Effects and Risks of Ionizing Radiation (New York: United Nations)
UNSCEAR 1993: United Nations Scientific Committee of the Effect of Atomic Radiation - Sources, Effects and Risks Ionizing Radiations (New York: United Nations).
UNSCEAR 2000: Exposures from natural radiation sources. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. Vol. I, Annex B, 84–156.
Vasconcelos, D. C., Reis, P. A. L., Pereira, C., Oliveira, A. H. D., Santos, T. O., & Rocha, Z. (2013). Modeling Natural Radioactivity in Sand Beaches of Guarapari, Espirito State, Brazil. World. J. Nucl. Sci. Technol., 3, 65–71.
Vineethkumar, V., Kaliprasad, C. S. and Prakash, V. (2018). Assessment of natural
radioactivity and radiation index parameters in the coastal environment of Kerala. Radiat. 
Prot. Environ., 41, 99-103.
Wang, J., Du, J., &  Bi Q. (2017). Natural radioactivity assessment of surface sediments in the
Yangtze Estuary. Pollut. Bull., 114, 602-608.
WHO 2016: Ionising radiation, health effects and prospective measures. WHO Publication. April 
2016.