Antibacterial Activity and Cytotoxicity of Spinel Copper Ferrite Nanoparticles Synthesized by using Sol Gel Technique and Lemon Juice as Substrate

Document Type : Original Research Paper

Authors

1 Biological Development Department, Marine Science Center, University of Basrah, Iraq

2 Marine Environmental Chemistry, Marine Science Center, University of Basrah, Iraq

Abstract

      The objective of the present study was to prepare CuFe2O4 ferrite nanoparticles using the sol-gel combustion method, employing lemon juice as a surfactant and energy agent. This method is located within the green chemistry, representing an environmentally friendly and less expensive approach compared to other methods. The nanoparticles were subsequently evaluated as antibacterial agents against different pathogenic bacteria. Before the antibacterial assays, a cytotoxicity test was conducted to evaluate their safety when applied to organisms. The structural, morphological, elemental composition, and magnetic properties of the samples were analyzed using Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-Ray Detection (EDX). The X-ray diffraction patterns confirmed both the phase purity and the particle size to be 24.27 nm. The results demonstrated that the CuFe2O4 nanoparticles exhibited substantial antibacterial activity against both Gram-negative bacteria (Sphingomonas paucimobilis) and Gram-positive bacteria (Staphylococcus lentus and Bacillus subtilis). The antibacterial efficacy was more pronounced against Gram-negative bacteria, with inhibition diameter 5.46mm and 10.64mm at concentrations of 5000 ppm and 10000 ppm, respectively. When making a comparison, the effectiveness against Gram-positive bacteria displayed a slight reduction. Inhibition zones measured 2.76 mm and 8.33 mm for Staphylococcus lentus, while they were 3.58 mm and 5.35 mm for Bacillus subtilis. These measurements were observed at nanoparticle concentrations of 5000 ppm and 10000 ppm, respectively. Furthermore, the study confirmed the safety of the CuFe2O4 nanoparticles by assessing their toxicity on human red blood cell at different concentrations (50, 100,250,500,1000,5000, and 10000 ppm).

Keywords

Main Subjects


Ali, D. A., Ismael, M. A., Hashem, M. A., & Akl, M. A. (2021). Antibacterial activity of ecofriendly biologically synthesized copper oxide nanoparticles. Egypt. J. Chem., 64(8), 4099–4104. https://doi.org/10.21608/ejchem.2021.67430.3481
Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2018). Antibacterial and Antibiofilm Potential of Green Synthesized Silver Nanoparticles against Imipenem Resistant Clinical Isolates of P. aeruginosa. Bionanoscience, 8(2), 544–553. https://doi.org/10.1007/s12668-018-0505-8
Anandan, K., & Rajendran, V. (2011). Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Mater. Sci. Semicond. Process., 14(1), 43–47. https://doi.org/Https://doi.org/10.1016/j.mssp.2011.01.001
Angeline Mary, A. P., Thaminum Ansari, A., & Subramanian, R. (2019). Sugarcane juice mediated synthesis of copper oxide nanoparticles, characterization and their antibacterial activity. J. King Saud Univ. - Sci., 31(4), 1103–1114. https://doi.org/10.1016/j.jksus.2019.03.003
Ansari, M. A., Baykal, A., Asiri, S., & Rehman, S. (2018). Synthesis and Characterization of Antibacterial Activity of Spinel Chromium-Substituted Copper Ferrite Nanoparticles for Biomedical Application. J. Inorg. Organomet. Polym. Mater., 28(6), 2316–2327. https://doi.org/10.1007/s10904-018-0889-5
Ashour, A. H., El-Batal, A. I., Maksoud, M. I. A. A., El-Sayyad, G. S., Labib, S., Abdeltwab, E., & El-Okr, M. M. (2018). Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology, 40, 141–151. https://doi.org/Https://doi.org/10.1016/j.partic.2017.12.001
Bilal, A., Kasi, J. K., Kasi, A. K., Bokhari, M., Ahmed, S., & Ali, S. W. (2022). Environment friendly synthesis of nickel ferrite nanoparticles using Brassica oleracea var. capitate (green cabbage) as a fuel and their structural and magnetic characterizations. Mater. Chem. Phys., 290, 126483. https://doi.org/Https://doi.org/10.1016/j.matchemphys.2022.126483
Céspedes, E., Byrne, J. M., Farrow, N., Moise, S., Coker, V. S., Bencsik, M., Lloyd, J. R., & Telling, N. D. (2014). Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale, 6(21), 12958–12970. https://doi.org/10.1039/c4nr03004d
Eid, M. M. (2021). Characterization of Nanoparticles by FTIR and FTIR-Microscopy BT  - Handbook of Consumer Nanoproducts (S. Mallakpour & C. M. Hussain (eds.); pp. 1–30). Springer Singapore. https://doi.org/10.1007/978-981-15-6453-6_89-1
Elango, M., Deepa, M., Subramanian, R., & Mohamed Musthafa, A. (2017). Synthesis, characterization of polyindole/AgZnO nanocomposites and its antibacterial activity. J. Alloys Compd., 696, 391–401. https://doi.org/Https://doi.org/10.1016/j.jallcom.2016.11.258
Emami-Karvani, Z. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African J. Microbiol. Res., 5(18). https://doi.org/10.5897/ajmr10.159.
Harikumar, P. (2016). Antibacterial Activity of Copper Nanoparticles and Copper Nanocomposites against Escherichia Coli Bacteria. Int. J. Sci., 2(02), 83–90. https://doi.org/10.18483/ijsci.957
Hsueh, Y. H., Tsai, P. H., Lin, K. S., Ke, W. J., & Chiang, C. L. (2017). Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains. J. Nanobiotechnology, 15(1), 1–12. https://doi.org/10.1186/s12951-017-0314-1
Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett., 19(1), 355–374. https://doi.org/10.1007/s10311-020-01074-x
Kadyrzhanov, K. K., Egizbek, K., & Kozlovskiy, A. L. (2019). Synthesis and Properties of Ferrite-Based Nanoparticles. Nanomaterials, 9(8), 1079.
Kareem, S. J. and A. H. (2018). The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite. Nanoparticles, 26(4), 282–291.
Li, X., & Zhang, W. (2006). Iron Nanoparticles:  the Core−Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir, 22(10), 4638–4642. https://doi.org/10.1021/la060057k
Lv, W., Liu, B., Luo, Z., Ren, X., & Zhang, P. (2008). XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method. J. Alloys Compd., 465(1), 261–264. https://doi.org/Https://doi.org/10.1016/j.jallcom.2007.10.049
Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. de M. R., Lopes, P. R. M., de Moraes, P. B., Montagnolli, R. N., Ferreira, H., & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep., 12(1), 1–10. https://doi.org/10.1038/s41598-022-06657-y
Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., Moreira, R., Li, Y., Luzhetskyy, A., Medema, M. H., Pernodet, J. L., Stadler, M., Tormo, J. R., Genilloud, O., Truman, A. W., & Müller, R. (2021). Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem., 5(10), 726–749. https://doi.org/10.1038/s41570-021-00313-1
Nair, M. G., Putnam, A. R., Mishra, S. K., Mulks, M. H., Taft, W. H., Keller, J. E., Miller, J. R., Zhu, P.-P., Meinhart, J. D., & Lynn, D. G. (1989). Faeriefungin: A New Board-Spectrum Antibiotic from Streptomyces griseus var. autotrophicus. J. Nat. Prod., 52(4), 797–809. https://doi.org/10.1021/np50064a022
Nas, F. S., Ali, M., & A, A. M. (2018). L UPINE PUBLISHERS Application of Nanomaterials as Antimicrobial Agents : A Review. Arch. Nanomedicine Open, 1(3), 59–64. https://doi.org/10.32474/anoaj.2018.01.000114
Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. Bin, Lam, S. E., Khandaker, M. U., & Bradley, D. A. (2022). Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ. - Sci., 34(3), 101869. https://doi.org/10.1016/j.jksus.2022.101869
Payne, J. N., Waghwani, H. K., Connor, M. G., Hamilton, W., Tockstein, S., Moolani, H., Chavda, F., Badwaik, V., Lawrenz, M. B., & Dakshinamurthy, R. (2016). Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front. Microbiol., 7(MAY), 1–10. https://doi.org/10.3389/fmicb.2016.00607
 Singh, R., & Thirupathi, G. (2017). Manganese-Zinc Spinel Ferrite Nanoparticles and Ferrofluids. In Magnetic Spinels - Synthesis, Properties and Applications (Issue March). https://doi.org/10.5772/66522
Tan, Y., Dai, X., Li, Y., & Zhu, D. B. (2003). Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J. Mater. Chem. - J MATER CHEM, 13, 1069–1075. https://doi.org/10.1039/b211386d
Terreni, M., Taccani, M., & Pregnolato, M. (2021). New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules, 26(9). https://doi.org/10.3390/molecules26092671
Vergis, R. B., Kottam, N., Krishnappa, S., Rajashekarappa, S., Rajan, K. H., Nagabhushana, M. B., & Harsha, M. (2018). Evaluation of Antimicrobial Activity and Cytotoxic Effect on MCF-7 Cell Line of Combustion Derived CuFe2O4 Nanomaterial Using Aloe-Vera Extract. In Current Nanomaterials (Vol. 3, Issue 3, pp. 153–159). https://doi.org/Http://dx.doi.org/10.2174/2405461503666181116121843
Vinila, V. S., Jacob, R., Mony, A., Nair, H. G., Issac, S., Rajan, S., Nair, A. S., Satheesh, D. J., & Isac, J. (2014). X-Ray Diffraction Analysis of Nano Crystalline Ceramic PbBaTiO<sub>3</sub> Cryst. Struct. Theory Appl., 03(03), 57–65. https://doi.org/10.4236/csta.2014.33007
W, Z., & , Zuo X , Zhang D & Wu C, S. S. (2016). Cr(3+) substituted spinel ferrite nanoparticles with high coercivity. Nanotechnology, 27(24), 245707.
Zhang, W., Zuo, X., Zhang, D., Wu, C., & Silva, S. R. P. (2016). Cr(3+) substituted spinel ferrite nanoparticles with high coercivity. Nanotechnology, 27(24), 245707. https://doi.org/10.1088/0957-4484/27/24/245707