Modeling Airflow in Urban High-Rise Building Areas and Climate Comfort

Document Type : Original Research Paper

Authors

1 Kish International Campus, University of Tehran, P.O.Box 79416-55665 Kish, Iran

2 Graduate Faculty of Environment, University of Tehran, P.O.Box 14155-6135, Tehran, Iran

Abstract

Urban morphology impacts micro-climates, solar energy absorption, air flow, wind patterns, energy consumption, and air pollution concentration. Temperature control in public spaces reduces heat island formation, while ventilation corridors potentially improve air quality. However, despite the literature on airflow and urban tall buildings providing valuable insights, further research is needed to understand the complex relationship between airflow patterns and urban high-rise buildings. This research should consider factors such as landscape types, building height, density, and orientation. This research aims to examine airflow patterns in high-rise buildings that are influenced by nearby land use, which can impact ventilation and climate comfort. To investigate these objectives, we utilized the Universal Thermal Climate Index (UTCI) and Predicted Mean Vote Index (PMV) by conducting simulations using ENVI-met software. The results revealed that buildings with narrower widths have better wind warded front conditions, while those with an unfavorable wind angle or a narrow facade are less comfortable. Public spaces that face the wind benefit from improved ventilation. It is essential to consider the optimal arrangement, ventilation, and height of buildings to ensure the favorable airflow. Factors such as the placement of trees, the use of porous walls, water features such as fountains and sprinklers, and the local climate all contribute to creating better wind conditions. Investigating the reciprocal interaction between the landscape, high-rise buildings, and climate comfort could be considered in future research.

Keywords

Main Subjects


Afshar, N. K., Karimian, Z., Doostan, R., & Nokhandan, M. H. (2018). Influence of planting designs on winter thermal comfort in an urban park. J ENVIRON ENG LANDSC, 26(3), 232-240. 
Al-Obaidi, I., Rayburg, S., Półrolniczak, M., & Neave, M. (2021). Assessing the impact of wind conditions on urban heat islands in large Australian cities. J. Ecol. Eng., 22(11), 1-15. 
Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., . . . Kampmann, B. (2013). An introduction to the universal thermal climate index (UTCI). Geogr. Pol., 86(1), 5-10. 
Bouketta, S., & Bouchahm, Y. (2020). Numerical evaluation of urban geometry’s control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate. Renew. Energy, 146, 1062-1069. 
Cilek, M. U., & Uslu, C. (2022). Modeling the relationship between the geometric characteristics of urban green spaces and thermal comfort: The case of Adana city. Sustain. Cities Soc., 79, 103748. 
Du, Z., Guo, W., Li, W., & Gao, X. (2022). A study on the optimization of wind environment of existing villa buildings in Lingnan area: a case study of Jiangmen’s “Yunshan Poetic” moon island houses. Buildings, 12(9), 1304. 
Dyvia, H., & Arif, C. (2021). Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Walther, E., & Goestchel, Q. (2018). The PET comfort index: Questioning the model.  Build Environ., 137, 1-10. 
Fontenelle, M. R., Bastos, L. E. G., & Lorente, S. (2021). Natural ventilation for office building retrofit in dense urban context under hot and humid climate. Ambient. Constr. 21, 67-87.
Ghobadi, P., Maleki, A., & Aali, S. A. (2022). Analysis of the Effect of Urban Block Morphology on Wind Flow. Geogr. Res., 37(4), 409-416.
Givoni, B. (1998). Climate considerations in building and urban design: John Wiley & Sons.
Gu, K., Fang, Y., Qian, Z., Sun, Z., & Wang, A. (2020). Spatial planning for urban ventilation corridors by urban climatology. Ecosyst. Health Sustain, 6(1), 1747946. 
Hadavi, M., & Pasdarshahri, H. (2021). Impacts of urban buildings on microclimate and cooling systems efficiency: Coupled CFD and BES simulations. Sustain. Cities Soc., 67, 102740. 
Han, L., Zhao, J., Zhang, T., & Zhang, J. (2022). Urban ventilation corridors exacerbate air pollution in central urban areas: Evidence from a Chinese city. Sustain. Cities Soc., 87, 104129. 
He, B.-J. (2018). Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Clim., 24, 26-33. 
He, B.-J., Ding, L., & Prasad, D. (2020). Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc., 60, 102289. 
He, P., Liang, J., Qiu, Y., Li, Q., & Xing, B. (2020). Increase in domestic electricity consumption from particulate air pollution. Nat. Energy, 5(12), 985-995. 
Ignatius, M., Wong, N. H., & Jusuf, S. K. (2015). Urban microclimate analysis with consideration of local ambient temperature, external heat gain, urban ventilation, and outdoor thermal comfort in the tropics. Sustain. Cities Soc., 19, 121-135. 
Jafari, M., & Alipour, A. (2021a). Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review. J. Build. Eng., 33, 101582. 
Jafari, M., & Alipour, A. (2021b). Review of approaches, opportunities, and future directions for improving aerodynamics of tall buildings with smart facades. Sustain. Cities Soc., 72, 102979. 
Jafarpur, P., & Berardi, U. (2021). Effects of climate changes on building energy demand and thermal comfort in Canadian office buildings adopting different temperature setpoints. J. Build. Eng., 42, 102725. 
Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sust. Energ. Rev., 54, 1002-1017. 
Jing, Y., Zhong, H.-Y., Wang, W.-W., He, Y., Zhao, F.-Y., & Li, Y. (2021). Quantitative city ventilation evaluation for urban canopy under heat island circulation without geostrophic winds: Multi-scale CFD model and parametric investigations. Build. Environ., 196, 107793. 
Kang, G., Kim, J.-J., & Choi, W. (2020). Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban area. Sustain. Cities Soc., 56, 102086. 
Liang, Q., Fu, J., Li, Z., Yan, B., Shu, Z., & He, Y. (2020). Bimodal distribution of wind pressure on windward facades of high-rise buildings induced by interference effects. J. Wind Eng. Ind. Aerodyn., 200, 104156. 
Ma, T., & Chen, T. (2020). Classification and pedestrian-level wind environment assessment among Tianjin’s residential area based on numerical simulation. Urban Clim., 34, 100702. 
Megahed, N. A., & Ghoneim, E. M. (2021). Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ. Res., 193, 110471. 
Merabet, G. H., Essaaidi, M., Haddou, M. B., Qolomany, B., Qadir, J., Anan, M., . . . Benhaddou, D. (2021). Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renew. Sust. Energ. Rev., 144, 110969. 
Mölders, N. (2019). Outdoor universal thermal comfort index climatology for Alaska. NPJ Clim. Atmos. Sci, 9(04), 558. 
Momeni, M., & Edeali, M. H. (2014). Evaluation of Tourism Comfort Climate in Mazandaran Province Using PMV Model. Adv. nat. appl. sci., 8(9), 129-135. 
Nazarian, N., Fan, J., Sin, T., Norford, L., & Kleissl, J. (2017). Predicting outdoor thermal comfort in urban environments: A 3D numerical model for standard effective temperature. Urban Clim., 20, 251-267. 
Nie, T., Lai, D., Liu, K., Lian, Z., Yuan, Y., & Sun, L. (2022). Discussion on inapplicability of Universal Thermal Climate Index (UTCI) for outdoor thermal comfort in cold region. Urban Clim., 46, 101304. 
Nugroho, N. Y., Triyadi, S., & Wonorahardjo, S. (2022). Effect of high-rise buildings on the surrounding thermal environment. Build. Environ., 207, 108393. 
Papazoglou, E., Moustris, K. P., Nikas, K.-S. P., Nastos, P. T., & Statharas, J. C. (2019). Assessment of human thermal comfort perception in a non-air-conditioned school building in Athens, Greece. Energy Procedia, 157, 1343-1352. 
Park, S., Tuller, S. E., & Jo, M. (2014). Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc Urban Plan, 125, 146-155. 
Qaid, A., Lamit, H. B., Ossen, D. R., & Shahminan, R. N. R. (2016). Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy Build., 133, 577-595. 
Ren, C., Yang, R., Cheng, C., Xing, P., Fang, X., Zhang, S., . . . Kwok, Y. T. (2018). Creating breathing cities by adopting urban ventilation assessment and wind corridor plan–The implementation in Chinese cities. J. Wind Eng. Ind. Aerodyn., 182, 170-188. 
Roffe, S. J., van Der Walt, A. J., & Fitchett, J. M. (2023). Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index for 1971–2021. Int. J. Climatol., 43(6), 2930-2952. 
Sadeghi, M., Wood, G., Samali, B., & de Dear, R. (2020). Effects of urban context on the indoor thermal comfort performance of wind catchers in a residential setting. Energy Build, 219, 110010. 
Shi, Z., Yang, J., Zhang, Y., Xiao, X., & Xia, J. C. (2022). Urban ventilation corridors and spatiotemporal divergence patterns of urban heat island intensity: a local climate zone perspective. Environ. Sci. Pollut. Res., 29(49), 74394-74406. 
Soydan, O. (2020). Effects of landscape composition and patterns on land surface temperature: Urban heat island case study for Nigde, Turkey. Urban Clim., 34, 100688. 
Takebayashi, H. (2022). Effects of air temperature, humidity, and wind velocity distribution on indoor cooling load and outdoor human thermal environment at urban scale. Energy Build, 257, 111792. 
Tsichritzis, L., & Nikolopoulou, M. (2019). The effect of building height and façade area ratio on pedestrian wind comfort of London. J. Wind Eng. Ind. Aerodyn., 191, 63-75. 
Van Moeseke, G., Gratia, E., Reiter, S., & De Herde, A. (2005). Wind pressure distribution influence on natural ventilation for different incidences and environment densities. Energy Build., 37(8), 878-889. 
Yang, J., Jin, S., Xiao, X., Jin, C., Xia, J. C., Li, X., & Wang, S. (2019). Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc., 47, 101487. 
Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc., 54, 101941. 
Ye, G., Yang, C., Chen, Y., & Li, Y. (2003). A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET∗). Build. Environ., 38(1), 33-44. 
Yu, Z., Chen, S., & Wong, N. H. (2020). Temporal variation in the impact of urban morphology on outdoor air temperature in the tropics: A campus case study. Build. Environ., 181, 107132. 
Zhang, S., Zhang, X., Niu, D., Fang, Z., Chang, H., & Lin, Z. (2023). Physiological equivalent temperature-based and universal thermal climate index-based adaptive-rational outdoor thermal comfort models. Build. Environ., 228, 109900. 
Zheng, Z., Ren, G., Gao, H., & Yang, Y. (2022). Urban ventilation planning and its associated benefits based on numerical experiments: A case study in beijing, China. Build. Environ., 222, 109383. 
Zong, L., Liu, S., Yang, Y., Ren, G., Yu, M., Zhang, Y., & Li, Y. (2021). Synergistic influence of local climate zones and wind speeds on the urban heat island and heat waves in the megacity of Beijing, China. Front. Earth Sci., 9, 673786.