Assessing Heavy Metal Contamination In Surface Water And Sediments Of The Tafna River (North-West Of Algeria)

Document Type : Original Research Paper

Authors

1 Geo-environment Laboratory, Faculty of Earth Science, Geography, and Territorial Planning, University of Science and Technology Houari Boumediene (FSTGAT/USTHB), BP 32 El Alia-16000, Alger, Algeria

2 Environmental Monitoring Networks Research Laboratory (LRSE), Faculty of Nature and Life Sciences, University Oran 1, Algeria

3 Biology of Microorganisms and Biotechnology Laboratory «LBMB», Faculty of Nature and Life Sciences, University Oran 1, Algeria, Department of Biotechnology, Algeria

4 Ritsumeikan Asia Pacific University College of Asia Pacific Studies Graduate School of Asia Pacific Studies: Ritsumeikan Asia Taiheiyo Daigaku Asia Taiheiyo Gakubu Daigakuin Asia Taiheiyo Kenkyuka

Abstract

Water and sediments have become a major threat. Heavy metals, some of which are potentially toxic, are distributed in different areas by different routes. Tafna river was studied upstream and downstream under contrasting hydrological conditions during the year 2020.The different levels and sources of pollution are assessed by combining geochemical indicators: geoaccumulation index (GI-go), contamination factor (CF), pollutant loading index (PLI) and supplemented by correlation matrix (CM) as statiscal analyses added principal component analysis (PCA). The elements analysed were physical and chemical parameters (pH, DO, electrical conductivity CE and, COD BOD5), and the metallic elements (Fe, Cd, Pb, Cu, Mn and Zn). They were classified based on how contaminated they were: for the water compartment (Fe> Mn>Cu>Pb>Cd>Zn), while for sediments (Zn> Pb>Fe>Cd>Cu >Mn). The results suggest that the chemical composition of the waters of the Tafna river is influenced by the lithology, which contributes to the enrichment of the sediments. All of the indicators suggest an average levels of sediment and water pollution at the Tafna's summit, then decreases towards the bottom due to the geomorphology with multiple sources of pollution. As a result, our study offers the first comprehensive information on the amount of heavy metals present in the riverbed's sediment and water.

Keywords

Main Subjects


ANRH. (2003). Etude de la Synthèse sur les Ressources en Eaux de Surface de l’Algérie du Nord. Rapport d’étude. Agence Nationale des Ressources Hydrauliques (ANRH), Algiers, Algeria. 
APHA. (1999). Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington DC.
Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., &  Dar, S.A. (2020). Concerns and Threats of Contamination on Aquatic Ecosystems. (In: Hakeem, K., Bhat, R., Qadri, H. (eds), Bioremediation and Biotechnology. (pp.1–26). Springer. https://doi.org/10.1007/978-3-030-35691-0_1
Belhadj, H. (2002). Contribution à l’étude des métaux lourds dans la moyenne Tafna : impact de la zone industrielle de Maghnia, Tlemcen university, Algeria. Engineering memory. 
Benabdelkader, A., Taleb, A., Probst, J.L., Belaidi, N., &   Probst, A. (2018). Anthropogenic contribution and influencing factors on metal features in fluvial sediments from a semi-arid Mediterranean river basin (Tafna River, Algeria): A multi-indices approach. Sci. Total Environ., 626, 899-914 .https://doi.org/10.1016/j.scitotenv.2018.01.107  
Probst, J.L., &   Amiotte-Suchet, P. (1992). Fluvial suspended sediment transports and mechanical erosion in the Maghreb (Northwest Africa). Hydrol Sci J. , 37 (6), 621–637. https://doi.org/10.1080/02626669209492628 
Benjama, A., Morakchi, K., Merad, H., Boukari, A., Chouchane, T., Belaabed, B.E. & Djabri, L. (2011). Caractérisation des matériaux biologiques issus d’un écosystème naturel «PNEK » situé au Nord-Est de l’Algérie. J Soc Alger Chim., 21(1), 45-58.
Casas, J.M., Rosas, H., Sole, M., & Lao, C. (2003). Heavy metals and metalloids in sediments from the Llobregat basin, Spain.  Environmental Geology., 44, 325–332. https://doi.org/10.1007/s00254-003-0765-6 
Charuseiam,Y., Chotpantarat, S., & Sutthirat, C. (2022). Acid mine drainage potential of waste rocks in a gold mine (Thailand): application of a weathering cell test and multivariate statistical analysis. Environ. Geochem. Health., 44 (3), 1049–1079. https://doi.org/10.1007/s10653-021-00976-1  
Christian, S., Annkatrin, W., Friederike, S., Sebastijan,V., Harun, E., Christian, K., & Niklas, A. (2020). Comparative assessment of microplastics in water and sediment of a large European river. Sci. Total. Environ., 738, 139866.  https://doi.org/10.1016/j.scitotenv.2020.139866
Cobelo-Garcıa, A., & Prego, R. (2003). The author work space heavy metal sedimentary record in a Galician ria (NW Spain): background values and recent contamination. Mar. Pollut. Bull., 46, 1253–1262. https://doi.org/10.1016/S0025-326X(03)00168-1  
Copat, C., Bella, F., Castaing, M., Fallico, R., Sciacca, S., &  Ferrante, M. (2012). Heavy metals concentrations in fish from Sicily (Mediterranean sea) and evaluation of possible health risks to consumers. Environ Contam Toxicol., 88, 78–83. https://doi.org/10.1007/s00128-011-0433-6 
Dauda, A.B., Ajadi, A., Tola-Fabunmi, A.S., & Akinwole, A.O. (2019). Waste production in aquaculture: Sources, components, and management in different culture systems. Aquac. Fish., 4 (3), 81–88. https://doi.org/10.1016/j.aaf.2018.1010.1002
El Azhari, A., Rhoujjati, A., & EL Hachimi, L.M. (2016). Assessment of heavy metals and arsenic contamination in the sediments of the Moulouya River and the Hassan II Dam downstream of the abandoned mine Zeïda (High Moulouya, Morocco). J. Afri Earth  Sci., 119, 279–288. https://doi.org/10.1016/j.jafrearsci.2016.04.011
Forstner, U., & Wittmann, G.T.W. (1981). Metal pollution in the aquatic environment. Springer-Verlag, 2nd Eds, (481). New York
Gao, L., & li, D. (2014). A review of hydrological/water-quality models. Front. Agric. Sci. Eng., 1–11. https://doi.org/10.15302/J-FASE-2014041.   
Islam, S., Idris, A.M., Islam, A.R.M.T., & al. (2021). Hydrological distribution of physicochemical parameters and heavy metals in surface water and their ecotoxicological implications in the Bay of Bengal coast of Bangladesh. Environ. Sci. Pollut. Res., 28, 68585–68599. https://doi.org/10.1007/s11356-021-15353-9     
Jouanneau, J.M., Boutier, B., Chiffoleau, J.F., Latouche, C., & Philipps I. (1990). Cadmium in the Gironde fluvioestuarine system: Behaviour and flow. Sci. Total Environ., 97, 465– 479. https://doi.org/10.1016/0048-9697(90)90257-U    
Kouidri, M., Dali-youcef, N., Benabdellah, I., Ghoubali, R., Bernoussi, A., & Lagha, A. (2016). Enrichment and geoaccumulation of heavy metals and risk assessment of sediments from coast of Ain Temouchent (Algeria). Arabian Journal of Geosci., 9, 354. https://doi.org/10.1007/s12517-016-2377-y 
Le Van, M., Chotpantarat, S., Van Pham, D.T., & Toan, P. (2022). Spatial and temporal variabilities of surface water and sediment pollution at the main tidal-influenced river in Ca Mau Peninsular, Vietnamese Mekong Delta J. Hydrol: Regional Studies., 41, 101082.    https://doi.org/10.1016/j.ejrh.2022.101082  
Liang, Y., Yi, X., Dang, Z., Wang, Q., Luo, H., & Tang, J. (2017). Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. Int. J. Environ. Res, Public. Health., 14 (12), 1557. https://doi.org/1510.3390/ijerph14121557    
Ludwig, W., Meybeck, M., & Abousamra, F. (2003). Riverine Transport of Water, Sediments, and Pollutants to the Mediterranean Sea. Athens. UNEP MAP Technical Report, 141 
Ontiveros-Cuadras, J.F., Ruiz-Fernandez, A.C., Sanchez-Cabeza, J.A., Sericano, J., P´erezBernal, L.H., Paez-Osuna, ´ F., Dunbar, R.B., & Mucciarone, D.A. (2019). Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake. J. Hazard. Mater., 368, 264–273. https://doi.org/10.1016/j.jhazmat.2018.11.010 
Perrin, J.L., Raïs, N., Chahinian, N., Moulin, P., & Ijjaali, M. (2014). Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco). J. Hydrol., 510, 26–34. https://doi.org/10.1016/j.jhydrol.2013.12.002 
Probst, J.L., & Amiotte-Suchet, P. (1992). Fluvial suspended sediment transports and mechanical erosion in the Maghreb (Northwest Africa). Hydrol. Sci J., 37 (6), 621–637. https://doi.org/10.1080/02626669209492628
Probst, J.L., Messaïtfa, A., Krempp, G., & Behra, P. (1999). Fluvial transports of mercury pollution in the Ill river basin (Northeastern France): Partitioning into Aqueous Phases, Suspended Matter and Bottom Sediments. In: Ebinghaus, R., Turner, R.R., de Lacerda, L.D., Vasiliev, O., & Salomons, W. (Eds.), Mercury Contaminated Site, Environmental Science.. Springer, Berlin, Heidelberg (pp 501–520). https://doi.org/10.1007/978-3-662-03754-6_29
Rouidi, S., Hadef, A., & Dziri, H. (2022). The state of Metallic Contamination of Saf-Saf River Sediments (Skikda – Algeria). Pollution., 8(3), 717-728. https://DOI:10.22059/POLL.2022.324730.110 
Rouidi, S. (2014). Evaluation de la contamination par les hydrocarbures des sédiments superficiels (fluviaux et marins) de la région de Skikda (nord-est algérien). Analyses statistiques. Thèse de doctorat en Biologie végétale et environnement, Université Badji Mokhtar-Annaba, Algérie
Ruqayah Ali, G., Marwan, H.A., Csilla, S., Osamah, J.A., & al. (2023). Polycyclic aromatic hydrocarbons in the surface water and sediment along Euphrates River system: Occurrence, sources, ecological and health risk assessment. Mar. Pollut. Bull., 187, 114568. https://doi.org/10.1016/j.marpolbul.2022.114568 
Sadaoui, M., Ludwig, W., Bourrin, F., & Romeroa, E. (2018). The impact of reservoir construction on riverine sediment and carbon fluxes to the Mediterranean Sea. Prog. Ocean. Ogr., 163, 94-111. https://doi.org/10.1016/j.pocean.2017.08.003   
Siddiqui, E., & Pandey, J. (2019). Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ. Sci. Pollut. Res., 26, 10926–10940. https://doi.org/10.1007/s11356-019-04495-6 
Singh, K.P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Anal. Chim. Acta., 538 (1), 355–374. https://doi.org/310.1016/j.aca.2005.1002.1006
Taleb, A., Belaidia, N., & Gagneur, J. (2004). Water quality before and after dam building on a heavily polluted river in semi-arid Algeria. River. Res. Appl., 20, 1–14.  https://doi.org/10.1002/rra.800
Uddin, M.J., & Jeong, Y.K. (2021). Urban river pollution in Bangladesh during last 40 years: Potential public health and ecological risk, present policy, & future prospects toward smart water management. Heliyon., 7(2), e06107. https://doi.org/10.1016/j.heliyon.2021.e06107 
Whitehead, P.G., Bussi, G., Hossain, M.A., Dolk, M., Das, P., Comber, S., Peters, R., Charles, K.J., Hope, R., &  Hossain, S. (2018). Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies. Sci. Total. Environ., 631, 223-232. https://doi.org/10.1016/j.scitotenv.2018.03.038
World Health Organization (WHO) (2017). UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2017 Report: Financing Universal Water, Sanitation, and Hygiene under the Sustainable Development Goals. World Health Organization, Geneva