Ali, M. E., Hasan, M. F., Siddiqa, S., Molla, M. M., & Nasrin Akhter, M. (2023). FVM-RANS modeling of air pollutants dispersion and traffic emission in Dhaka City on a suburb scale. Sustainability 2023, 15(1); 673.
Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Comput. Environ. and Urban Syst., 59; 25–37.
Blocken, B. (2018). LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?’. Build. Simul., 11(5); 821–870.
Brenguier, F., Boué, P., Ben-Zion, Y., Vernon, F., Johnson, C. W., Mordret, A., Coutant, O., Share, P. E., Beaucé, E., Hollis, D., & Lecocq, T. (2019). Train traffic as a powerful noise source for monitoring active faults with seismic interferometry. Geophys. Res. Lett., 46(16); 9529–9536.
Chatzimichailidis, A. E., Argyropoulos, C. D., Assael, M. J., & Kakosimos, K. E. (2019). Implicit definition of flow patterns in street canyons-recirculation zone-using exploratory quantitative and qualitative methods. Atmos., 10(12); 794.
Che, D., & Jia, Q. (2019). Three-dimensional geological modeling of coal seams using weighted Kriging method and Multi-Source Data. IEEE Access, 7; 118037–118045.
Chen, C., Hu, K., Li H., Yun A., & Li, B. (2015). Three-dimensional mapping of soil organic carbon by combining kriging method with profile depth function. PLoS ONE, 10(6), e0129038.
Dubey, R., Bharadwaj, S., Sharma, V. B., Bhatt, A., & Biswas, S. (2022). Smartphone-based traffic noise mapping system. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022; 613–620.
Franke, J., Hellsten, A., Schlünzen, K. H., & Carissimo, B. (2007). Best practice guideline for the CFD simulation of flows in the urban environment-a summary. In 11th Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK, July 2007 Cambridge Environmental Research Consultants.
García-Sánchez, C., Vitalis, S., Paden, I., & Stoter, J. (2021). The impact of level of detail in 3D city models for CFD-based wind flow simulations. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4/W4; 67–72.
Gaur, N., & Raj, R. (2022). Aerodynamic mitigation by corner modification on square model under wind loads employing CFD and wind tunnel. Ain Shams Eng. J., 13(1); 101521.
Gilani, T. A., & Mir, M. S. (2021). Modelling road traffic noise under heterogeneous traffic conditions using the graph-theoretic approach. Environ. Sci. Pollut. Res., 28(27); 36651–36668.
Gimenez, J. M., & Bre, F. (2019). Optimization of RANS turbulence models using genetic algorithms to improve the prediction of wind pressure coefficients on low-rise buildings. J. Wind Eng. Ind. Aerodyn., 193; 103978.
Grunwald, S., & Barak, P. (2003). 3D geographic reconstruction and visualization techniques applied to land resource management. Trans. in GIS, 7(2); 231–241.
Grunwald, S., Barak, P., & Rooney, D. (2001). Web-based virtual models for the earth science community. Am. Soc. Agric. Eng., 2001; 1-9.
Haron, Z., Ming Han, L., Darus, N., Ling Lee, Y., Jahya, Z., Abdul Hamid, M. F., Yahya, K., & Ngian Shek, P. (2015). A preliminary study of environmental noise in public university. J. Teknol., 77(16); 145–151.
Hood, R. A. (1987). Accuracy of calculation of road traffic noise. Appl. Acoust., 21; 139–146.
Huang, Y., Wang, L., Hou, Y., Zhang, W., & Zhang, Y. (2018). A prototype IOT based wireless sensor network for traffic information monitoring. Int. J. Pavement R. Technol., 11(2); 146–152.
ISO 9613-2. (1996). Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation
Jasim, S. A., Rudiansyah, M., Ongdashkyzy, O. A., Taban, T. Z., Chupradit, S., Iswanto, A. H., Suhayb, M. K., Falih, K. T., Alshahrani, N. Z., & Mustafa, Y. F. (2022). Determining the parameters of noise pollution in the central area of the Almaty city in Kazakhstan. Noise Mapp., 9(1); 120–127.
Jiang, Q., Peng, J., Biswas, A., Hu, J., Zhao, R., He, K., & Shi, Z. (2019). Characterising dryland salinity in three dimensions. Sci. Total Enviro., 682; 190–199.
Juan, Y. H., Wen, C. Y., Li, Z., & Yang, A. S. (2021). Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays. Appl. Energy, 299; 117304.
Kaseb, Z., Hafezi, M., Tahbaz, M., & Delfani, S. (2020). A framework for pedestrian-level wind conditions improvement in urban areas: CFD simulation and optimization. Build. Environ., 184; 107191.
Konde, A., & Saran, S. (2017). Web-enabled spatiotemporal semantic analysis of traffic noise using CityGML. J. Geomat., 11(2); 248–259.
Kumar, K., Ledoux, H., Commandeur, T. J. F., & Stoter, J. E. (2017). Modelling urban noise in City GML ADE: case of the Netherlands. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., 4(4W5); 73–81.
Kummitha, O. R., Kumar, R. V., & Krishna, V. M. (2021). CFD analysis for airflow distribution of a conventional building plan for different wind directions. J. Comput. Des. Eng., 8(2); 559–569.
Kurakula, V. K., & Kuffer, M. (2008). 3D noise modeling for urban environmental planning and management. CORP 008: Mobility Nodes as Innovation Hubs: Proc. 13th Int. Conf. Urban Planning Reg. Dev. Inf. Society, Vienna, May 19–21 2008, Competence Center of Urban and Regional Planning, Schwechat 2008, 517–523
Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New functions open up new applications. J. Photogramm. Remote Sens. Geoinf. Sci., 88(1); 43–61.
Laxmi, V., Dey, J., Kalawapudi, K., Vijay, R., & Kumar, R. (2019). An innovative approach of urban noise monitoring using cycle in Nagpur, India. Environ. Sci. Pollut. Res., 26(36); 36812–36819.
Lee, H. M., Luo, W., Xie, J., & Lee, H. P. (2022). Traffic noise reduction strategy in a large city and an analysis of its effect. Appl. Sci.,12(12); 6027.
Lee, K. Y., & Mak, C. M. (2021). Effects of wind direction and building array arrangement on airflow and contaminant distributions in the central space of buildings. Build. Environ., 205; 108234.
Lee, M., Park, G., Park, C., & Kim, C. (2020). Improvement of grid independence test for computational fluid dynamics model of building based on grid resolution. Adv. Civ. Eng., 2020; 8827936.
Li, J., Liu, P., Wang, X., Cui, H., & Ma, Y. (2022). 3D geological implicit modeling method of regular voxel splitting based on layered interpolation data. Sci. Rep., 12(1); 1–14.
Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw., 53, 173–89.
Lv, T., Fu, J., & Li, B. (2022). Design and application of multi-dimensional visualization system for large-scale ocean data. ISPRS Int. J. Geo-Information, 11(9); 491.
Madsen, R. B., Kim, H., Kallesøe, A. J., Sandersen, P. B. E., Vilhelmsen, T. N., Hansen, T. M., Christiansen, A. V., Møller, I., & Hansen, B. (2021). 3D multiple-point geostatistical simulation of joint subsurface redox and geological architectures. Hydrol. Earth Syst. Sci., 25(5); 2759–2787.
Masum, M. H., Pal, S. K., Akhie, A. A., Ruva, I. J., Akter, N., & Nath, S. (2021). Spatiotemporal monitoring and assessment of noise pollution in an urban setting. Environ. Chall., 5; 100218.
Mileff, P., & Dudra, J. (2019). Simplified voxel based visualization. Prod. Syst. Inf. Eng., 8; 5–18.
Miltiadou, M., Campbell, N. D. F., Cosker, D., & Grant, M. G. (2021). A comparative study about data structures used for efficient management of voxelised full-waveform airborne LiDAR data during 3D polygonal model creation. Remote Sens. 2021, 13(4); 559.
Mishra, R. K., Mishra, A. R., & Singh, A. (2018). Traffic noise analysis using RLS-90 model in urban city. INTER-NOISE and NOISE-CON Congr. Conf. Proc., 259(3); 6490-6502.
Moonen, P., Defraeye, T., Dorer, V., Blocken, B., & Carmeliet, J. (2012). Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res., 1(3); 197–228.
Rajasekarababu, K. B., Vinayagamurthy, G., & Selvi Rajan, S. (2019). Experimental and computational investigation of outdoor wind flow around a setback building. Build. Simul., 12(5); 891–904.
Ranjbar, H. R., Gharagozlou, A. R., & Vafaei Nejad, A. R. (2012). 3D analysis and investigation of traffic noise impact from Hemmat Highway located in Tehran on buildings and surrounding areas. J. Geogr. Inf. Sys., 4(4); 322-334.
Ridzuan, N., Ujang, U., & Azri, S. (2023). 3D vectorization and rasterization of CityGML standard in wind simulation. Earth Sci. Informatics, 16(3); 2635-2647.
Saran, S., Oberai, K., Wate, P., Konde, A., Dutta, A., Kumar, K., & Senthil Kumar, A. (2018). Utilities of virtual 3D city models based on CityGML: various use cases. J. Indian Soc. Remote Sens., 46(6); 957–972.
Sattar, A. M. A., Elhakeem, M., Gerges, B. N., Gharabaghi, B., & Gultepe, I. (2018). Wind-induced air-flow patterns in an urban setting: Observations and numerical modeling. Pure Appl. Geophys., 175(8); 3051–3068.
Shirzadi, M., Mirzaei, P. A., & Tominaga, Y. (2020). RANS model calibration using stochastic optimization for accuracy improvement of urban airflow CFD modeling. J. Build. Eng., 32; 101756.
Sukkuea, A., & Heednacram, A. (2022). Prediction on spatial elevation using improved kriging algorithms:An application in environmental management. Expert Syst. Appl., 207; 117971.
Sun, D., Shi, X., Zhang, Y., & Zhang, L. (2021). Spatiotemporal distribution of traffic emission based on wind tunnel experiment and computational fluid dynamics (CFD) simulation. J. Clean. Prod., 282; 124495.
Wickramathilaka, N., Ujang, U., Azri, S., & Choon, T. L. (2023a). Calculation of road traffic noise, development of data, and spatial interpolations for traffic noise visualization in three-dimensional space. Geomat. Environ. Eng., 17(5), 61–85.
Wickramathilaka, N., Ujang, U., Azri, S., & Choon, T. L. (2023b). Three-dimensional visualisation of traffic noise based on the Henk de-Klujijver Model. Noise Mapp., 10(1).
Wu, H., Zhu, Q., Guo, Y., Zheng, W., Zhang, L., Wang, Q., Zhou, R., Ding, Y., Wang, W., Pirasteh, S., & Liu, M. (2022). Multi-level voxel representations for digital twin models of tunnel geological environment. Int. J. Appl. Earth Obs. Geoinf., 112; 102887.
Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc., 54; 101941.
Zhang, M., Bae, W., & Kim, J. (2019). The effects of the layouts of vegetation and wind flow in an apartment housing complex to mitigate outdoor microclimate air temperature. Sustainability 2019, 11(11); 3081.
Zhang, X., Weerasuriya, A. U., & Tse, K. T. (2020). CFD simulation of natural ventilation of a generic building in various incident wind directions: Comparison of turbulence modelling, evaluation methods, and ventilation mechanisms. Energy Build., 229, 110516.
Zheng, X., Montazeri, H., & Blocken, B. (2020). CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES. Build. Environ., 173; 106747.
Zheng, X., & Yang, J. (2021). CFD simulations of wind flow and pollutant dispersion in a street canyon with traffic flow: Comparison between RANS and LES. Sustain. Cities Soc., 75; 103307.