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INTRODUCTION

There are many sources of pollution, including agriculture runoff, industrial discharge, 
sewage and wastewater, oil spills, and plastic wastes, that can contaminate aquatic ecosystems 
(Banaee et al., 2019; Banaee et al., 2022a, b). 

Untreated sewage and wastewater discharged into rivers and oceans can introduce harmful 
pathogens, viruses, and bacteria and result in water pollution (Ji et al., 2021; Sun et al., 
2022). Industries that generate toxic chemicals, heavy metals, or other hazardous materials 
may discharge these substances into neighboring water sources, leading to water pollution 
(Derikvandy et al., 2020; Mozafari et al., 2023). The application of pesticides and fertilizers in 
agriculture can contaminate water sources through leaching and runoff, causing water pollution 
(Banaee et al., 2013; Banaee et al., 2023a, b). Landfills that do not dispose of waste appropriately 
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Computational toxicology is a rapidly growing field that utilizes artificial intelligence (AI) 
and machine learning (ML) to predict the toxicity of chemical compounds. Computational 
toxicology is an important tool for assessing the risks associated with the exposure of finfish 
and shellfish to environmental contaminants. By providing insights into the behavior and effects 
of these compounds, computational models can help to inform management decisions and 
protect the health of aquatic ecosystems and the humans who depend on them for food and 
recreation. In aqua-toxicology research, Quantitative Structure-Activity Relationship (QSAR) 
models are commonly used to establish the relationship between chemical structures and their 
aquatic toxicity. Various ML algorithms have been developed to construct QSAR models, 
including Random Forest (RF), Artificial Neural Networks (ANNs), Support Vector Machines 
(SVMs), Bayesian networks (BNs), k-Nearest Neighbor (kNN), Probabilistic Neural Networks 
(PNNs), Naïve Bayes, and Decision Trees. Deep learning techniques, such as Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have also been applied in 
computational toxicology to improve the accuracy of QSAR predictions. Moreover, data mining 
graphs, networks and graph kernels have been utilized to extract relevant features from chemical 
structures and improve predictive capabilities. In conclusion, the application of artificial 
intelligence and machine learning in the field of computational toxicology has immense potential 
to revolutionize aquatic toxicology research. Through the utilization of advanced algorithms and 
data analysis techniques, scientists can now better understand and predict the effects of various 
toxicants on aquatic organisms.
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can contaminate groundwater, which could later enter rivers and other water bodies, resulting in 
water pollution (Farzaneh et al., 2021; Javahershenas et al., 2022). Accidents such as oil spills 
from ships or offshore drilling platforms can release excessive quantities of oil into the water 
and cause severe water pollution (Carpenter, 2019).

Nanoparticle pollution can have significant impacts on water environments, particularly on 
aquatic ecosystems and the organisms (Banaee et al., 2023; Moore, 2006; Samim et al., 2022). 
Moreover, nanoparticle pollution can also affect water quality by reducing transparency and 
increasing turbidity, thereby decreasing light penetration and disrupting photosynthesis (Regier 
et al., 2015). This can have cascading effects on the food chain, potentially leading to reduced 
productivity and biodiversity loss.

Plastic pollution is an another of major environmental issue that affects aquatic ecosystems 
worldwide (Walker & Fequet, 2023; Zeidi et al., 2023). Plastic takes hundreds of years to break 
down and when it ends up in oceans, rivers, and lakes, it can cause significant harm to marine life 
and the environment (Gholamhosseini et al., 2023). Plastic waste in the ocean poses a significant 
threat to marine life as it can often be mistaken for food or cause entanglement resulting in harm 
or even mortality (Zeidi et al., 2022). Moreover, plastics can release chemicals into the water 
that can be harmful to aquatic organisms, including endocrine-disrupting chemicals that can 
interfere with reproductive systems and development (Q. Chen et al., 2019). Plastic pollution can 
also disrupt the food chain by reducing the availability of food sources for animals, which can 
have ripple effects throughout the ecosystem (Banaee et al., 2021). Furthermore, accumulations 
of plastic waste can also damage important habitats such as coral reefs or wetlands, leading to 
degradation of these ecosystems.

Experimental toxicology can be studied in two broad categories, including in vivo and in 
vitro. In vivo toxicology involves examining the impact of chemicals on living organisms, 
typically through animal testing. In contrast, in vitro toxicology entails conducting experiments 
in a controlled laboratory setting outside of a living organism, such as using isolated cells or 
tissue cultures (Lacroix et al., 2018; Luijten et al., 2021).

In conducting in vivo toxicology experiments, ethical considerations must be taken into 
account. One of the main concerns is the use of animals for experimentation, which raises 
issues about animal welfare and potential harm to living beings (Bruner, 1992; McNamee et al., 
2009). To address this, researchers should aim to reduce any pain or discomfort caused during 
experimentation and adhere to strict regulations and guidelines that prioritize the animals’ well-
being.

Moreover, there is a growing ethical concern about the necessity of animal testing for 
toxicology studies (Ceyhan, 2022). Some people argue that subjecting animals to possibly 
harmful substances is unjustifiable when alternative methods may exist (Pereira & Tettamanti, 
2011). Therefore, researchers should also consider exploring other approaches, such as in vitro 
testing, that minimize the use of animals for toxicity studies.

Although traditional ecotoxicology methods are important tools for assessing the potential 
risks of chemicals on the environment and aquatic animals’ health, they also have several 
limitations that need to be considered. Hence, new approaches like computational toxicology 
can offer some advantages over traditional ecotoxicology methods (Netzeva et al., 2007; 
Modabberi et al., 2020; Silva & Kwok, 2020; Souza et al., 2020), but both approaches should 
be used as complementary tools for assessing chemical risks.

Since computational toxicology (in silico) can replace some animal testing methods 
(Reisfeld & Mayeno, 2012), researchers should ensure that alternative methods are valid and 
reliable before phasing out existing techniques that may have been used for many years. It is 
essential to ensure that any new approach protects human health while reducing animal testing 
as much as possible. However, ethical considerations in computational toxicology primarily 
center around data privacy and protection. Since computational toxicology often involves the 
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use of large datasets, there is a risk that the data collected may contain sensitive information 
about individuals or groups (Souza et al., 2020). Thus, researchers must ensure that the data 
is anonymized and protected from potential breaches that could compromise the privacy of 
those involved. Another ethical concern is the accuracy and transparency of the models used in 
computational toxicology (Steger-Hartmann, 2013). The efficacy of these models relies on the 
quality and quantity of data used to train them (Steger-Hartmann, 2013). Therefore, researchers 
must ensure that the data used does not introduce any biases or inaccuracies that could lead to 
incorrect predictions or decisions.

Computational toxicology is an emerging field that uses computational tools and artificial 
intelligence (AI) to predict the toxicity of chemicals and other substances (Choudhuri et 
al., 2023). This approach can help to reduce the need for animal testing and accelerate the 
development of safer and more sustainable products.

There are several types of computational tools and AI approaches used in computational 
toxicology, including Quantitative Structure-Activity Relationship (QSAR) models, high-
throughput screening assays, machine learning algorithms, deep learning, and toxicogenomics 
(Kar & Leszczynski, 2019; Raies & Bajic, 2016; Sarker, 2021; Singh et al., 2023; Wang et al., 
2021).

Computational toxicology is an important tool in the assessment of the risks associated with 
exposure of finfish and shellfish to environmental contaminants. These organisms are often 
used as sentinel species to monitor the health of aquatic ecosystems, and computational models 
can help to predict the potential effects of contaminants on these species.

One common application of computational toxicology in finfish and shellfish is in predicting 
the bioaccumulation of contaminants in these organisms. Bioaccumulation occurs when 
contaminants accumulate in the tissues of fish and shellfish over time, leading to elevated levels 
of these compounds in their bodies (Li et al., 2023; Noman et al., 2022; Schmidt & Burgess, 
2020). Computational models can help to predict how different contaminants behave in the 
environment, and how likely they are to accumulate in fish and shellfish (Bartell et al., 2020; 
Netzeva et al., 2007).

Another use of computational toxicology in finfish and shellfish is in predicting the toxic 
effects of contaminants on these organisms. Researchers can use computational models to 
simulate the interactions between contaminants and biological systems, and to predict how 
exposure to these compounds might affect the health and survival of fish and shellfish. In this 
study, some of computational methods were briefly introduced that used in aqua-toxicology.  

Necessity of using computational toxicology
Computational toxicology is becoming increasingly important in the field of toxicology 

because it allows for more efficient and cost-effective screening of potentially hazardous 
chemicals. Traditional toxicological methods involve a significant amount of animal testing, 
which can be both time-consuming and expensive. Computational toxicology, on the other hand, 
uses computer models to predict the potential toxicity of chemicals based on their chemical 
properties and known toxicological data (Kusko & Hong, 2019).

This approach allows researchers to prioritize chemicals for further testing based on their 
predicted toxicity, reducing the number of animals needed for testing and saving time and 
resources (Ekins, 2014). Computational toxicology can also help identify potential risks 
associated with exposure to complex mixtures of chemicals, such as those found in the 
environment or in consumer products (Wang & Chen, 2019).

Thus, computational toxicology has the potential to significantly improve our ability to 
identify and mitigate the potential risks associated with exposure to hazardous chemicals, while 
also reducing the reliance on animal testing (Kusko & Hong, 2019).

Therefore, computational toxicology is becoming an essential tool for predicting the safety 
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of chemicals, ensuring human and environmental safety, and complying with regulatory 
requirements.

However, the use of computational toxicology does require specialized infrastructure and 
tools including advanced computers, database, efficient software, experience and knowledge of 
programming and modeling, etc. (Lepailleur et al., 2013).

GitHub is a web-based platform that provides a centralized location for software developers 
to collaborate on projects using the Git version control system (Wheeler et al., 2023). Git allows 
multiple developers to work on the same codebase simultaneously without stepping on each 
other’s toes, by keeping track of changes made to the code and allowing developers to merge 
their changes together (Wheeler et al., 2023). GitHub has many potential applications in the 
field of computational toxicology, as it can be used to facilitate collaboration and open sharing 
of data and code among researchers.

Researchers can use GitHub (GitHub: Let’s build from here · GitHub; https://github.com) to 
share toxicological data sets they have collected, annotated, or curated with other researchers 
across different disciplines. This can help to promote the reuse of existing data sets and avoid 
duplicating efforts (Silva & Kwok, 2022). Furthermore, GitHub can be used to develop and share 
computational models for predicting toxicity. This could include models that are developed using 
machine learning or other statistical approaches, as well as more descriptive models that are 
based on known toxicological mechanisms (Kusko & Hong, 2019). Researchers can collaborate 
on developing and refining these models, which may ultimately lead to better predictions of 
toxicity. GitHub can also be used to ensure that research findings are reproducible by others. 
By sharing code, data, and analysis workflows in a repository, researchers can enable others to 
replicate their work and verify their findings. This can help to increase the transparency and 
credibility of computational toxicology research (Silva & Kwok, 2022). Moreover, researchers 
can use GitHub to develop and share open-source software tools that support the development 
and application of computational toxicology models (Silva, 2020). Examples of such tools could 
include libraries for data processing, visualization, and model building, or software packages 
for running specific types of models. Thus, GitHub can play an important role in advancing the 
field of computational toxicology by facilitating collaboration, sharing of data and code, and 
promoting reproducibility and transparency in research.

METHODOLOGY

Quantitative Structure-Activity Relationship 
Quantitative Structure-Activity Relationship (QSAR) is a computational approach that 

establishes a relationship between the chemical structure of a molecule and its biological 
activity (De et al., 2022; Gramatica, 2020).

The QSAR approach is based on the idea that the properties and activities of molecules are 
determined by their molecular structures, such as their electronic properties, steric hindrance, 
and hydrophobicity (Kwon et al., 2019).

The development of QSAR models involves the use of mathematical algorithms to identify 
and quantify the relationship between structural features and observed activities. These models 
can then be used to predict the activity of new compounds with similar structures (Tropsha, 
2010).

Typically, QSAR models require large datasets of compounds with known activities in 
order to establish statistically significant relationships (Tropsha, 2010; Z. Wang et al., 2021). 
The accuracy of QSAR models depends on the quality and quantity of data used to develop 
them. QSAR models have been successfully applied in the fields of drug discovery, toxicology, 
environmental chemistry, ecotoxicology and many other areas of research where predicting 
the activity of molecules is critical (S. Chen et al., 2023; Rácz et al., 2019; Tang et al., 2022; 

https://github.com/
https://github.com
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Toropova et al., 2023).
Several stages are involved in constructing a Quantitative Structure-Activity Relationship 

(QSAR) model based on computational toxicology. These stages include data collection, data 
preparation, molecular descriptor calculation, model selection, model development, and model 
validation (Ballabio et al., 2019; Bohlen et al., 2019).

The first step is to collect data on a large number of chemical compounds, along with information 
about their structural features and biological activities. This data can be obtained from various 
sources, such as literature databases, public repositories, or experimental studies (Bohlen et 
al., 2019). Once the data has been collected, it needs to be cleaned, curated, and standardized 
to ensure its quality and consistency. This may involve removing duplicates, missing values, 
outliers, or irrelevant variables. The next step is to calculate molecular descriptors for each 
compound (Bohlen et al., 2019). Molecular descriptors describe various aspects of a chemical’s 
structure, such as size, shape, polarity, and electronic properties (Todeschini & Consonni, 
2010). There are several software tools available for calculating molecular descriptors, such as 
Dragon, RDKit, and PaDEL. Once the molecular descriptors have been calculated, the next step 
is to select an appropriate modeling technique. There are many machine learning algorithms 
available for QSAR modeling, including linear regression, support vector machines (SVM), 
random forest, and neural networks (Jain & Rawat, 2023; Kovačević et al., 2023; Kovács et al., 
2021; Trinh et al., 2022). The selection of the modeling technique is dependent on the nature 
of the data, the intended application, and the researcher’s expertise. The selected modeling 
technique is then used to build a mathematical model that can predict the biological activity or 
toxicity of new compounds based on their molecular descriptors (Baumann & Baumann, 2014). 
The model is trained on the curated data set, and model performance is evaluated using cross-
validation techniques to assess the accuracy, reliability, and robustness of the model (Kwon et 
al., 2019). The final step is to validate the QSAR model by applying it to an independent test 
set of compounds that were not included in the training set. The predicted values are compared 
with the actual values to evaluate the predictive power of the model (Gramatica & Sangion, 
2016). The performance of the model can be further refined by adjusting the model parameters, 
feature selection or the inclusion of additional descriptors.

Table 1- Molecular descriptors in different machine learning models 
 

Reference Performance 
accuracy (%) Molecular descriptors  Model inputs  Model  

(Xue et al., 2006)  88.90  CD,PD,GD,CoD,OH 
1129 

(Tetrahymena 
pyriformis toxicity) 

SVM  

(In et al., 2012) 95.10  CD, ED, PD, TI, GD 
611 

(fathead minnow 
toxicity) 

SVM  

(Cheng et al., 2011)  91.60  MDL 
1571  
 (T. 

pyriformis toxicity) 
kNN  

(Singh et al., 2013)  94.94  PD, CD, TD 
573  

(fathead minnow 
toxicity) 

PNN  

(Li et al., 2017)  74 FP, Ext, Est, Maccs, Graph, 
AP2D, …

151  
(diverse pesticides) NB  

(He et al., 2019) 68.90 Es, Ext, FP, Gra, Mac, Pub, 
Sub, …

639 
(diverse pesticides) kNN 

(Marzo et al., 2020) 89 F05, B01, B09, T, 
ATSC7m, ATSC6s, …

143 
(Biocide) RF 

 
  

Table 1. Molecular descriptors in different machine learning models
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Random Forest
Random Forest (RF) is a powerful machine learning technique that is commonly used in 

computational toxicology to predict the toxicity of chemical compounds (Mistry et al., 2016; 
Uesawa, 2016). This algorithm falls under the category of supervised learning, where it is 
trained on a set of data with known outcomes (labels or classes) and then used to predict the 
outcomes of new data. RF is an ensemble learning method, which means it combines the results 
of multiple decision trees to generate more accurate predictions (Uesawa, 2016).

In toxicology, RF models can be trained on large sets of chemical data (e.g., physicochemical 
properties, structural features, etc.) and their corresponding toxicity outcomes (Koutsoukas et 
al., 2016). These models can then be used to predict the toxicity of new chemicals based on 
their features. Moreover, RF can be used to predict various endpoints related to toxicity, such 
as acute toxicity to fishes, mutagenicity, and carcinogenicity (Ospina et al., 2014; Yu & Zeng, 
2022). To build an RF model, sometimes thousands of molecular descriptors are calculated 
for each compound, and these descriptors are used as input features to the model (Kapsiani & 
Howlin, 2021).

The RF algorithm works by constructing a large number of decision trees, each of which is 
trained on a randomly selected subset of the input features and a randomly selected subset of 
the training data (Mistry et al., 2016). The final prediction from the RF model is then generated 
by averaging the predictions of all the individual decision trees.

One of the advantages of RF is its ability to handle high-dimensional data with many input 
features (Oo & Thein, 2022). RF can also provide insight into the importance of each input feature 
for predicting toxicity, which can help researchers understand the underlying mechanisms of 
toxicity (Jeong & Choi, 2022).

Overall, RF has proven to be a highly effective tool in computational toxicology for predicting 
toxicity endpoints and prioritizing compounds for further testing. Furthermore, one advantage 
of using RF in toxicology is that it is highly interpretable (Jia et al., 2023). The algorithm 
provides information about which features are most important for predicting toxicity, allowing 
toxicologists to focus on those features for further investigation (Jia et al., 2023). Additionally, 
Random Forest is robust to noise and outliers in the data.

However, Random Forest models can also suffer from overfitting, where the model becomes 
too complex and fits the training data too closely, resulting in poor generalization to new data 
(Hoarau et al., 2023). To avoid overfitting, it is important to tune the hyperparameters of the 
model and use appropriate cross-validation techniques.

The first step is to preprocess the data. This involves handling missing values, dealing with 
categorical variables, and scaling the data if necessary. Next, the data needs to be split into 
training, validation, and test sets (Mooney & Pejaver, 2018). The training set is used to train the 
model, the validation set is used to tune hyperparameters and prevent overfitting, and the test 
set is used to evaluate the model’s performance.

Before the RF model is built, performing feature selection may be wanted to identify the 
most important features for predicting toxicity (Koutsoukas et al., 2016; Polishchuk et al., 
2009; Svetnik et al., 2003). This can help to reduce the dimensionality of the data and improve 
the accuracy of the model. Once the data has been preprocessed and split, the RF model can 
be built. This involves specifying the number of decision trees to include in the ensemble, as 
well as the maximum depth of each tree and other hyperparameters (Biau & Scornet, 2016). 
After the RF model has been trained on the training set, its performance should be evaluated on 
the validation set. This involves calculating various metrics such as accuracy, precision, recall, 
and F1 score. If the model’s performance on the validation set is not satisfactory, tuning the 
hyperparameters of the RF algorithm may be needed. This can involve adjusting the number of 
decision trees, the maximum depth of each tree, or other parameters. Once the hyperparameters 
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have been tuned and satisfactory performance has been achieved on the validation set, the final 
model can be evaluated on the test set. This will provide an accurate estimate of how well the 
model will perform on new, unseen data.

Artificial neural networks 
Artificial neural networks (ANNs) have been increasingly used in toxicology for a variety of 

applications (Green et al., 2021; Pantic et al., 2023; Tetko et al., 2022). ANNs are computational 
models that are inspired by the structure and function of the human brain. They consist of 
interconnected nodes (neurons) that process information and learn from data (Silver et al., 
2016).

In toxicology, ANNs have been used for prediction of toxicity, classification of compounds 
based on their toxicity, and analysis of toxicity mechanisms (Noori et al., 2013; Pantic et al., 
2023). ANNs have also been employed in the development of quantitative structure-activity 
relationship (QSAR) models, which are used to predict the toxicity of chemicals based on their 
molecular structure (Baskin et al., 2009, 2018; Dobchev & Karelson, 2016; Niculescu, 2003; 
Pantic et al., 2023).

One of the advantages of using ANNs in toxicology is their ability to handle complex, non-
linear relationships between chemical structures and toxicity (Vracko, 2006). ANNs can also 
handle missing or incomplete data and can be trained on large datasets (Krogh, 2008).

However, like all modeling techniques, ANNs have their limitations and require careful 
validation and interpretation of results. Additionally, the quality of the input data is critical for 
the accuracy of the ANN model.

Thus, ANNs have proven to be a valuable tool in toxicology research and have the potential 
to improve our ability to predict and understand chemical toxicity (Asha et al., 2022; Guo & 
Wang, 2021).

Deep learning is a subset of machine learning that uses neural networks with multiple layers 
to process and analyze complex data (Dong et al., 2021). Deep learning has become increasingly 
popular in toxicology research due to its ability to handle large and complex datasets, as well as 
its capacity to capture non-linear relationships between variables (Heo et al., 2019; Lee & Sung, 
2021; Tan et al., 2023; Xu et al., 2022).

In toxicology, deep learning models have been used for drug discovery, toxicity prediction, 
and chemical structure-activity relationship (SAR) modeling (Matsuzaka & Uesawa, 2023; 
Meenakshi et al., 2022). For example, deep learning models have been used to predict the 

 
Table 2- Random forest modeling studies on different aquatic species 

 
References Model Input Target species  Toxicity analysis  Validation Model  

(Fei-xiong et al., 
2010)  849 (Insecticide)  Pimephales 

promelasLC50, LD50 R2= 0.930 

RF  

(Li et al., 2017) 151 (Pesticides) Lepomis 
macrochirus 

Classification of 
toxicity A=  0.760 

(Sun et al., 2015) 1906 (chemical 
compounds) 

Lepomis 
macrochirus

LC50 

A= 0.810 

Pimephales 
promelasA= 0.779 

Oncorhynchus 
mykissA= 0.782 

(He et al., 2019) 639 (chemical 
compounds)Daphnia Magna EC50   A= 0.740 

(Marzo et al., 2020) 143 (chemical 
compounds)Daphnia Magna EC50   R2= 0.890 

 
  

Table 2. Random forest modeling studies on different aquatic species
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potential toxicity of new drugs during early-stage development, which can help identify 
potential safety concerns before expensive and time-consuming clinical trials begin.

Support Vector Machines
Support Vector Machines (SVMs) are a type of machine learning algorithm that have been 

used in computational toxicology to predict the toxicity of chemical compounds (Wang et al., 
2021; Yu, 2021). SVM models work by finding a hyperplane that maximally separates two 
classes of data, in this case, toxic and non-toxic compounds (Ambure et al., 2021).

In order to develop an SVM model for toxicity prediction, a large dataset of chemical 
compounds with known toxicities is required. The dataset is split into training and testing sets, 
and the SVM model is trained on the training set to identify features that differentiate toxic from 
non-toxic compounds (Jeong & Choi, 2022).

Once the SVM model is trained, it can be used to predict the toxicity of new compounds 
based on their structural features. SVM models have been successfully applied in various 
areas of toxicology, including drug discovery, environmental toxicology, and chemical safety 
assessment (Lin & Chou, 2022; Rodríguez-Pérez & Bajorath, 2022).

However, it is important to note that SVM models are not without limitations. They require 
a large amount of high-quality data to achieve accurate predictions, and the interpretation of 
SVM model outputs can be challenging due to their mathematical complexity (Kumar et al., 
2019; Waske et al., 2010). Overall, SVMs are a powerful tool in computational toxicology, but 
their use should be carefully considered and validated.

The first step in using SVMs is to prepare the data. This involves selecting the appropriate 
training and test datasets, as well as any features or descriptors that will be used to represent 
the chemicals in the dataset. A critical aspect of using SVMs in computational toxicology is 
feature generation (Liu et al., 2020). This involves converting the chemical structures into 
numerical features or descriptors that can be used by the SVM algorithm (Kumar et al., 2019). 
Some common types of descriptors used in toxicology include molecular weight, logP, and 
various types of fingerprints (Liu et al., 2020). Once the data has been prepared and the features 
generated, the next step is to select an appropriate SVM model. There are several different types 
of SVM models to choose from, including linear, polynomial, radial basis function (RBF), and 
sigmoid (Armaghani et al., 2020; Saha et al., 2021; Sattlecker et al., 2010; Tanveer et al., 2022). 
Once a model has been selected, it needs to be trained on the prepared data. During training, 
the algorithm tries to find the optimal decision boundary that separates the toxic and non-toxic 
chemicals in the dataset. After training, the model needs to be evaluated on a test dataset to 
determine its performance (Mammone et al., 2009). Common metrics used to evaluate SVM 
models in toxicology include accuracy, precision, recall, and F1-score (Kang et al., 2022). If 
the model’s performance is not satisfactory, it may be necessary to optimize the model. This 
can involve adjusting hyper-parameters or changing the feature set used in modeling. Once the 

Table 3. Artificial neural networks modeling studies on different aquatic species

 
Table 3- Artificial neural networks modeling studies on different aquatic species 

 
 

References Model Input  Target species  Toxicity 
analysis  Validation Model  

(Li et al., 2017)  
278 (pesticide)  multispecies  Classification 

of toxicity 
A= 0.790 

ANN 
829 (pesticide) Oncorhynchus mykiss  A= 0.810 

(Singh et al., 
2013) 

617 (chemical 
compounds)  Pimephales promelas LC50 A= 0.940 PNN 

(Huuskonen, 
2003) 

140 (chemical 
compounds) Pimephales promelas LC50 R2= 0.880 ANN 
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model has been optimized and tested, it is important to interpret the results. This might involve 
identifying which features are most important for predicting toxicity or investigating potential 
mechanisms of toxicity.

Support Vector Machines (SVM) can indeed be used in the field of aquatic toxicology (Ai et 
al., 2019; Ivanciuc, 2002; Kim et al., 2023; Michielan et al., 2010). Aquatic toxicology focuses 
on assessing the effects of chemical substances on aquatic organisms and ecosystems (Noori 
et al., 2012). SVM is a machine learning algorithm that can be employed to develop predictive 
models for toxicity assessment and classification tasks in aquatic toxicology (Wang et al., 2021; 
Yu, 2021). SVM can be used to build models that predict the toxicity of chemicals to aquatic 
organisms (Fan et al., 2021). Researchers typically train SVM models using labeled datasets 
containing information about chemical properties and corresponding toxicity data. The SVM 
model can then classify new, unlabeled chemicals based on their features and predict their 
potential toxicity to aquatic organisms (Xu et al., 2022).

SVM can also be applied to classify exposure levels of aquatic organisms to different 
chemical pollutants. By training an SVM classifier with input variables such as chemical 
concentration, exposure duration, and biological responses, it becomes possible to determine 
the level of toxicity associated with specific exposure scenarios (Ai et al., 2019; Luan et 
al., 2005; Yu, 2021). Furthermore, SVM models can identify the most important features 
or descriptors contributing to aquatic toxicity prediction. By examining the SVM’s support 
vectors and associated feature weights, researchers can gain insights into the key chemical 
properties or characteristics that influence toxicity outcomes. SVM can aid in ecotoxicological 
risk assessment by integrating diverse datasets (Lee & Sung, 2021). This includes combining 
chemical properties, environmental factors, and biological response data to evaluate the 
potential risks posed by different chemicals to aquatic ecosystems. SVM models can help 
prioritize chemicals for further testing or regulatory actions based on their predicted risk levels.

SVM algorithms can effectively handle high-dimensional data and non-linear relationships, 
making them suitable for developing QSAR models (Ai et al., 2019; Hakim et al., 2022).

Bayesian networks 
Bayesian networks (BNs) are probabilistic graphical models that can be used to represent and 

analyze complex systems with uncertain relationships between variables. In toxicology, BNs 
have been used for quantitative risk assessment, predictive toxicity modeling, and prioritization 
 

Table 4- Support vector machine modeling studies on different aquatic species 
 

References Model Input Target species Toxicity analysis  Validation Model  

(Yu, 2021)  1121 (chemical 
compounds) multispecies pLC50 R2= 0.70 SVM-GA  

(Fei-xiong et al., 
2010) 849 (insecticide)  Pimephales 

promelasLC50, LD50 R2= 0.95 

SVM  

(Li et al., 2017) 
278 (pesticide)multispecies Classification of 

toxicity 

A= 0.810 

829 (pesticide) Oncorhynchus 
mykiss A= 0.810 

(Sun et al., 2015) 1906 (chemical 
compounds) 

Lepomis 
macrochirus 

LC50 

A= 0.826 

Pimephales 
promelasA= 0.733 

Oncorhynchus 
mykissA= 0.798 

(He et al., 2019) 639 (chemical 
compounds) 

Daphnia 
MagnaEC50  A= 0.749 

(Singh et al., 2013) 617 (chemical 
compounds) 

Pimephales 
promelasLC50 A= 0.877 

 
  

Table 4. Support vector machine modeling studies on different aquatic species
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of chemicals for testing (Langford et al., 2015; Moe et al., 2021).
One advantage of BNs is their ability to handle incomplete and uncertain data, as well as the 

incorporation of expert knowledge into the model. For example, BNs can be used to integrate 
information from various sources, such as in vitro and in vivo toxicity data, chemical structure, 
and physicochemical properties, to predict the potential toxicity of a chemical (Corani et al., 
2013).

BNs can also be used for decision-making under uncertainty, for example, by calculating the 
probability of adverse outcomes based on different exposure scenarios or mitigation strategies. 
This information can be used to inform regulatory decision-making and risk management 
(Kovalenko et al., 2019; Sperotto et al., 2019).

However, BNs require careful parameterization and validation, and the quality of the input 
data is crucial for the accuracy of the model. Additionally, the complexity of the model can 
make it difficult to interpret the results and identify important causal relationships between 
variables.

Therefore, BNs are a promising tool for toxicological risk assessment and decision-making, 
particularly when dealing with complex and uncertain systems (Kovalenko et al., 2019; Moe 
et al., 2021). However, their use requires an understanding of Bayesian principles and careful 
consideration of the quality and relevance of the input data.

k-Nearest Neighbor 
k-Nearest Neighbor (kNN) is a machine learning algorithm that has been used in computational 

toxicology to predict the toxicity of chemical compounds (Boone & Di Toro, 2019; Chen et al., 
2023; Gajewicz-Skretna et al., 2021). The kNN algorithm works by identifying the k-nearest 
neighbors of a new compound based on its structural features, and then predicting its toxicity 
based on the toxicity values of its nearest neighbors (Boone & Di Toro, 2019).

To develop a kNN model for toxicity prediction, a large dataset of chemical compounds with 
known toxicities is required (Lodhi et al., 2010). The dataset is split into training and testing 
sets, and the kNN model is trained on the training set to identify the k-nearest neighbors of each 
compound based on their structural features.

Once the kNN model is trained, it can be used to predict the toxicity of new compounds 
based on their structural features and their similarity to the compounds in the training set. kNN  

Table 5- K-Nearest Neighbor modeling studies on different aquatic species 
 
 

References Model Input  Target species  Toxicity 
analysis  Validation Model  

(Cassotti et al., 
2014)  

546 (organic 
pollutant)Daphnia Magna LC50 R2=  0.780 GA-kNN 

(Boone & Di 
Toro, 2019) 

1480 (chemical 
compounds) 79 (Genus) 50LC RMSE= 0.793 

kNN  

(Fei-xiong et al., 
2010) 849 (insecticide) Pimephales 

promelas  LC50, LD50 R2= 0.99 

(Li et al., 2017) 
278 (pesticide)multispecies Classification 

of toxicity 

A= 0.800 

151 (pesticide) Lepomis 
macrochirus A= 0.790 

(Sun et al., 2015) 1906 (chemical 
)compounds 

Lepomis 
macrochirus

50LC  

A= 0.875 

Pimephales 
promelasA= 0.752 

Oncorhynchus 
mykissA= 0.839 

(He et al., 2019) 639 (chemical 
compounds) Daphnia Magna EC50   A= 0.689 

 
  

Table 5. K.Nearest Neighbor modeling studies on different aquatic species
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models have been successfully applied in various areas of toxicology, including drug discovery, 
environmental toxicology, and chemical safety assessment (Meenakshi et al., 2022; Mu’azu & 
Olatunji, 2023; Wang et al., 2021).

However, it is important to note that kNN models are not without limitations. They require 
a large amount of high-quality data to achieve accurate predictions, and the choice of k value 
can significantly affect the performance of the model (Bhatti et al., 2020; Kumar et al., 2022). 
Additionally, kNN models can be computationally intensive, particularly when working with 
large datasets. Overall, kNN is a useful machine learning algorithm in computational toxicology, 
but the application of this method should be carefully considered and validated.

Probabilistic Neural Networks 
Probabilistic Neural Networks (PNNs) are a form of machine learning algorithm that have 

been employed in computational toxicology for predicting the toxicity of chemical compounds 
(Maertens et al., 2022; Spînu et al., 2022). PNN models work by estimating the probability 
density function of the feature vectors for each class of compounds, toxic and non-toxic, based 
on the training set (Mohebali et al., 2019).

To develop a PNN model for toxicity prediction, a large dataset of chemical compounds with 
known toxicities is required (Born et al., 2023). The dataset is split into training and testing sets, 
and the PNN model is trained on the training set to estimate the probability density functions of 
both toxic and non-toxic classes.

Once the PNN model is trained, it can be used to predict the toxicity of new compounds based 
on their structural features and their probability densities (Ahmadlou & Adeli, 2010). PNN 
models have been successfully applied in various areas of classification, toxicology, including 
drug discovery, environmental toxicology, and chemical safety assessment (Andayani et al., 
2019; Behzadi et al., 2009; Kaiser et al., 2002).

However, it is important to note that PNN models are not without limitations. They require 
a large amount of high-quality data to achieve accurate predictions, and the computation of 
probability densities can be time-consuming. Additionally, PNN models can be sensitive to 
the choice of kernel function (Singh et al., 2013). Overall, PNNs are a useful machine learning 
algorithm in computational toxicology, but their application should be carefully considered and 
validated (Singh et al., 2014).

Naïve Bayes
Naïve Bayes is a type of probabilistic classifier that is commonly used in computational 

toxicology (Baskin, 2018; Tugcu et al., 2023). It is a machine learning technique that is based 
on Bayes’ theorem, which describes the probability of an event occurring based on prior 
knowledge or evidence.

In computational toxicology, Naïve Bayes classifiers are often used to predict the toxicity 
of chemical compounds based on their structural features and other properties (Lin & Chou, 
2022). These classifiers work by analyzing the frequency of specific chemical substructures or 
molecular descriptors that are known to be associated with toxic effects (Zhu et al., 2023).

The underlying assumption of Naïve Bayes is that each feature or descriptor is independent 
of all others, which is why it is called “naïve”(Webb et al., 2010). Despite this simplifying 
assumption, Naïve Bayes classifiers can still achieve high accuracy in predicting toxicity, 
especially when trained on large datasets with diverse chemical structures (Zhang et al., 2017).

Overall, Naïve Bayes classifiers have proven to be a valuable tool in computational toxicology 
for screening chemical libraries, prioritizing compounds for further testing, and identifying 
potential toxic mechanisms of action.
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Decision trees 
Decision trees are commonly used in toxicology to help evaluate the potential toxicity of a 

chemical or substance (Jia et al., 2023; Mistry et al., 2016). The decision tree approach involves 
breaking down the evaluation process into a series of discrete steps, each of which can be 
evaluated using available data (Breiman et al., 2017).

The first step in constructing a decision tree for toxicology is to define the problem and the 
relevant endpoints that need to be considered (Mistry et al., 2016). This may include endpoints 
such as acute toxicity, irritation, sensitization, or carcinogenicity.

Once the endpoints have been defined, the next step is to gather data on the substance being 
evaluated, including information on its chemical structure, physical properties, and toxicological 
effects (Kluxen & Hothorn, 2020). This data can then be used to construct a preliminary decision 
tree, which outlines the various routes by which the substance could cause harm.

The decision tree can then be refined and revised based on additional data as it becomes 
available (Kingsford & Salzberg, 2008). For example, if new studies show that the substance has 
lower toxicity than previously thought, this information can be incorporated into the decision 
tree to refine the risk assessment (Karim et al., 2019).

Ultimately, the goal of the decision tree approach is to provide a systematic and transparent 
way of evaluating the potential risks associated with a given substance (Kingsford & Salzberg, 
2008). By breaking down the evaluation process into discrete steps, decision trees can help 
ensure that all relevant factors are considered, and that the risk assessment is based on the best 
available data.

Deep learning
One of the main challenges in toxicology is predicting the potential adverse effects of 

chemicals on human health, which can be time-consuming and expensive through traditional 
experimental methods. Deep learning has been increasingly applied in the field of toxicology 
to predict toxicity of various chemicals and drugs (Heo et al., 2019; Tandon et al., 2022; Wen 
et al., 2017).

Deep learning has been applied to the analysis of high-throughput screening data, where 
thousands of chemicals are tested for their toxicity or activity against specific targets. By 
identifying patterns in large datasets, deep learning algorithms can help researchers understand 
the mechanisms underlying toxicity and develop more effective drugs (Heo et al., 2019; 
Varghese et al., 2020). Furthermore, with deep learning, large amounts of chemical data, 
including structural information and toxicity profiles, can be processed and analyzed to build 
predictive models that can forecast potential toxicity (De Vera Mudry et al., 2021). This has the 
potential to reduce the need for animal testing and accelerate the development of new drugs 
by quickly identifying compounds with potential toxicities early in the development process. 
Deep learning models can also be used to identify patterns and relationships between different 
chemical features and their corresponding toxic effects, leading to insights into the mechanisms 

 
Table 6- Naïve Bayes modeling studies on different aquatic species 

 

References Model Input  Target species  Toxicity 
analysis  Validation Model  

(Fei-xiong et al., 
2010)  849 (pesticide)  Pimephales 

promelasLC50, LD50 R2= 0.750 

NB  (Li et al., 2017) 151 (pesticide) Lepomis 
macrochirus 

Classification of 
toxicityA= 0.740 

(He et al., 2019) 639 (chemical 
compounds)Daphnia Magna EC50   A= 0.650 

 
  

Table 6. Naïve Bayes modeling studies on different aquatic species
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of toxicity (Cova & Pais, 2019; Jeong & Choi, 2022).
However, deep learning models can be difficult to interpret and may require large amounts 

of training data to achieve accurate predictions. Additionally, the quality of the input data is 
critical for the accuracy of the model, and errors in the data can impact the performance of the 
model (Whang & Lee, 2020).

Therefore, deep learning has demonstrated great potential for advancing toxicology research, 
and ongoing efforts to improve model accuracy and interpretability will likely lead to even 
greater use of these techniques in the future.

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep learning model that have 

gained popularity in recent years due to their success in computer vision tasks such as image 
classification (Gu et al., 2018). However, CNNs can also be applied to other domains such as 
computational toxicology (Pantic et al., 2023).

In computational toxicology, CNNs can be used for various tasks such as prediction of 
toxicity of chemicals, drug safety assessment and identification of potential carcinogens (Kayes 
et al., 2022; Sun et al., 2019; Yuan et al., 2019). CNNs can learn to identify patterns in the 
molecular structure of a chemical or drug molecule that may be indicative of its toxicity or 
safety profile (Miccio & Schwartz, 2020).

For example, a CNN could be trained on a dataset of chemical compounds and their 
corresponding toxicity levels (Harada et al., 2020). The network would then learn features in 
the molecular structure of the compounds that are associated with toxicity. Once trained, the 
CNN could be used to predict the toxicity of new compounds based on their molecular structure.

Another application of CNNs in computational toxicology is in the analysis of high-throughput 
screening (HTS) data (Idakwo et al., 2019). HTS is a widely used approach for identifying 
potential drug candidates or toxic compounds by testing large numbers of compounds against 
biological targets. CNNs can be used to analyze HTS data, allowing researchers to quickly 
identify patterns and trends in large datasets.

Recurrent Neural Networks 
Recurrent Neural Networks (RNNs) have been used successfully in computational toxicology 

to predict the toxicity of chemicals based on their structure and other properties (Alsenan et al., 
2020; Guan, 2023). RNNs are a type of neural network that can process sequences of data, 
making them well-suited for analyzing chemical structures.

Table 7. Decision tree modeling studies on different aquatic species
 

Table 7- Decision tree modeling studies on different aquatic species 
 

References Model Input  Target species  Toxicity 
analysis  Validation Model  

(Fei-xiong 
et al., 2010)  849 (pesticide)  Pimephales promelas LC50, LD50 R2= 0.910 

DT  
(Li et al., 

2017) 151 (pesticide) Lepomis macrochirus  Classification 
of toxicity A= 0.810 

(He et al., 
2019) 

639 (chemical 
compounds) Daphnia Magna EC50 A= 0.667 

(Singh et 
al., 2013)  

617 (chemical 
compounds) Pimephales promelas LC50 A= 0.916 

(Singh et 
al., 2015) 

244 (medicinal 
compounds) multispecies LC50 

A= 0.987 DTbost  
A= 0.974 DTforest 
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One common application of RNNs in computational toxicology is in predicting the toxicity 
of new drugs or chemicals (Tan et al., 2023). Researchers can input the chemical structure, as 
well as other relevant features such as molecular weight and solubility, into an RNN model to 
predict the toxicity of the compound (Varghese et al., 2020). These models can then be used to 
prioritize compounds for further testing or to design safer alternatives.

Another use of RNNs in computational toxicology is in predicting the potential side effects 
of drugs (Segler et al., 2018). By training an RNN model on large datasets of drug interactions 
and adverse effects, researchers can identify patterns and predict which drugs are more likely 
to cause certain side effects (Zhang et al., 2018). This information can be used to guide the 
development of new drugs with fewer side effects.

Data mining graphs and networks
Data mining graphs can be used in toxicology to help identify and analyze patterns in large 

datasets, which can be useful for predicting toxic effects and understanding the underlying 
mechanisms of toxicity (Babić et al., 2018; Baskin, 2018). Graph-based data mining techniques, 
such as network analysis and graph clustering, can be particularly helpful for identifying 
relationships between different toxicological endpoints, such as gene expression changes or 
biochemical responses (Cook & Holder, 2000).

One application of data mining graphs in toxicology is the identification of potential 
drug targets based on their interactions within biological networks (Thafar et al., 2022). By 
constructing networks of genes, proteins, and other molecules involved in toxicity pathways, 
researchers can use graph algorithms to identify key nodes within the network that are likely to 
be important targets for drug development (Takigawa & Mamitsuka, 2013).

Another application of data mining graphs in toxicology is the analysis of chemical structures 
and their potential toxicological effects (Saigo et al., 2008). By building graphical models 
of chemical structures and analyzing the relationships between different structural features, 
researchers can predict how different compounds may interact with biological systems and 
potentially cause toxicity (Takigawa & Mamitsuka, 2013).

Furthermore, data mining graphs have the potential to be a powerful tool for toxicology 
research, allowing researchers to discover new insights into the complex relationships between 
chemicals, biological systems, and toxicity.

Graph kernels
Graph kernels are increasingly being used in the field of molecular toxicology to predict the 

toxicity of chemical compounds based on their structural similarity to known toxic compounds 
(Baskin, 2018; Xu et al., 2023). In this context, a graph kernel is a function that takes two 
graphs as input and computes a similarity score based on their structural properties.

Toxicologists often use chemical structure information to evaluate the hazard potential 
of chemicals (Nikinmaa, 2014; Rand et al., 2020). In recent years, the use of computational 
methods to predict toxicity has gained popularity due to its effectiveness, efficiency, and cost-
effectiveness compared to traditional experimental methods (Cronin & Yoon, 2018). One such 
computational method is graph kernels (Yang et al., 2022).

Graph kernels can be used to compare the structural similarities between two molecules by 
representing them as graphs (Vishwanathan et al., 2010). The nodes of the graph correspond 
to atoms in the molecule, and the edges represent chemical bonds (Mahé & Vert, 2009). By 
comparing the structures of different molecules, graph kernels can help identify patterns that 
are indicative of toxicity.

One example of using graph kernels in toxicology is the prediction of mutagenicity, which is 
an important factor in determining the safety of chemicals (Swamidass et al., 2005). Mutagens 
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can cause DNA damage, leading to mutations that can have adverse health effects (Sollazzo et 
al., 2018). Graph kernels have been used to develop machine learning models that can predict 
mutagenicity based on the structural features of molecules (Mahé et al., 2005).

Another application of graph kernels in toxicology is the prediction of drug toxicity. Drug 
toxicity can result in unwanted side effects and can even be life-threatening. Graph kernels have 
been used to build predictive models that can identify potentially toxic drug candidates based 
on their chemical structure (Swamidass et al., 2005).

Therefore, graph kernels have shown promise as a tool for predicting toxicity and identifying 
potential hazards associated with chemical compounds. Their ability to compare structural 
similarity between molecules can help facilitate the development of safer and more effective 
drugs and chemicals.

CONCLUSION

The application of artificial intelligence (AI) and machine learning (ML) in computational 
toxicology has shown great promise in improving our understanding of the effects of 
chemicals on aquatic organisms. With the increasing concern about the impact of various 
pollutants on the environment, it is essential to develop accurate and efficient methods to 
assess the hazards of these chemicals. One of the major advantages of using AI and ML 
in computational toxicology is their ability to process large amounts of data from various 
sources quickly and accurately. This enables researchers to identify patterns and relationships 
between different variables that may not be apparent through traditional methods. In aquatic 
toxicology, AI and ML can be used to model the effects of a chemical on different species 
of aquatic organisms, as well as to predict the toxicity of new chemicals based on their 
chemical structure and properties. These models can help to reduce the need for expensive 
and time-consuming laboratory experiments, while also providing valuable insights into 
the mechanisms underlying toxicity. Furthermore, AI and ML can be used to develop 
more accurate risk assessments for chemicals, taking into account factors such as exposure 
pathways, bioaccumulation, and ecological interactions. This information can then be used 
to inform regulatory decisions and improve environmental management practices. Thus, 
computational toxicology is a powerful tool for assessing the impact of chemicals on fish 
and shellfish, and can help inform risk assessments and management strategies for protecting 
these important aquatic species.
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