Escalating Trends of Hydrogen Sulphide (H2S) and its Role in Structuring Pakistan Coastal Zones Barren

Document Type : Original Research Paper

Authors

Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Sindh, Pakistan

Abstract

The presence of hydrogen sulfide (H2S) gas in the muddy ecosystems is consequence of anthropogenic interference. To understand ecosystem health present study was intended to gauge H2S concentrations involved in annihilation of meiofauna and associated aquatic life from four hotspots including Manora channel, Korangi creeks, Sonmiani, and Bhambhore along the Pakistan coastal belt. Using a handheld gas detector device, it was observed that Bhambhore exhibited lower levels of H2S therefore embraces numerous benthic organisms whereas Manora channel (backwater) and Korangi creek area showed elevated level that does not allow macro-organisms to stay around. The diversity varied across locations, with Bhambhore collecting the most species of mudskippers and Manora creeks collecting the rarest. Overall result of this study reveals that H2S 5~274 ppm is alarming. The data of crabs, mudskippers, fishes, mantis shrimps, shells in relation to the environmental variables of temperature, salinity, conductivity dissolved oxygen and H2S were used to develop canonical correspondence analysis. The variability among first two components was 64.47 and 28.44%, eigenvalue (0.154, 0.068 and trace 0.239) respectively. Considering baseline findings of this study, greater efforts are required for ecosystem resilience for the sake of human health concerns.

Keywords

Main Subjects


Abel, D. C., Koenig, C. C., & Davis, W. P. (1987). Emersion in the mangrove forest fish Rivulus marmoratus: a unique response to hydrogen sulfide. Environmental Biology of Fishes, 18, 67-72, 
Bagarinao, T. (1992). Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicology, 24(1-2), 21-62, 
Beauchamp, R. O., Bus, J. S., Popp, J. A., Boreiko, C. J., Andjelkovich, D. A., & Leber P. (1984). A critical review of the literature on hydrogen sulfide toxicity, Crit. Rev. Toxicol., 13; 25–97. 
Colby, P. J., & Smith, Jr, L. L. (1967). Survival of walleye eggs and fry on paper fiber sludge deposits in Rainy River, Minnesota, Trans. Am. Fish Soc., 96; 278–296.
Dubilier, N., Mülders, C., Ferdelman, T., de Beer, D., Pernthaler, A., Klein, M., ..., & Amann, R. (2001). Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature, 411(6835), 298-302, https://doi.org/10.1038/35077067
Kachhi, K. K., Panhwar, S. K., & Waryani, B. (2020). Recent gobies from Pakistan, northern Arabian sea: Diversity and biogeographic affinities. J Appl. Ichthyol., 36: 183–188. 
Habeeb, O. A., Kanthasamy, R., Ali, G. A. M., Sethupathi, S., & Yunus, R. B. M. (2018). Hydrogen sulfide emission sources, regulations, and removal techniques: a review, Rev. Chem. Eng., 34; 837–854.
Harbison, R. D., Bourgeois, M. M., & Johnson, G. T. (2015). Hamilton and hardy’s industrial toxicology, John Wiley & Sons.
Martin, K. E., & Currie, S. (2020). Hydrogen sulphide sensitivity and tolerance in genetically distinct lineages of a selfing mangrove fish (Kryptolebias marmoratus). Journal of Comparative Physiology B, 190(6), 761-770.
Nicholls, P., & Kim, J. K. (1982). Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Canadian journal of biochemistry, 60(6), 613-623.
Reiffenstein, R. J., Hulbert, W. C., & Roth, S. H. (1992). Toxicology of hydrogen sulfide. Annual review of pharmacology and toxicology, 32(1), 109-134.
Riesch, R. Tobler, M., & Plath, M. (2015). Hydrogen sulfide-toxic habitats. Extrem fishes, Ecol. Evol. Physiol. teleosts. Extrem. Environ., Springer International Publishing Switzerland 2015, pp. 137–159. 
Rossi, G. S., Tunnah, L., Martin, K. E., Turko, A. J., Taylor, D. S., Currie, S., & Wright, P. A. (2019). Mangrove fishes rely on emersion behavior and physiological tolerance to persist in sulfidic environments. Physiological and Biochemical Zoology, 92(3), 316-325.
Sarfraz, J., Ihalainen, P., Määttänen, A., Gulin, T., Koskela, J., Wilén, C-E., Kilpelä, A., & Peltonen, J. (2014). A printed H2S sensor with electro-optical response, Sensors and Actuators B. Chem.,191; 821–827. 
Sherief, M., & Aly, Hassan, A. (2022). The Impact of wastewater quality and flow characteristics on H2S emissions generation: Statistical correlations and an artificial neural network model, Water., 14; 791pp. 
Tobler, M., DeWitt, T. J., Schlupp, I., García de León, F. J., Herrmann, R., Feulner, P. G., ..., & Plath, M. (2008). Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution, 62(10), 2643-2659.
Tobler, M., Kelley, J. L., Plath, M., & Riesch, R. (2018). Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Molecular ecology, 27(4), 843-859.
Virjim, S. Kaner, R. B., & Weiller, B. H. (2006). Direct electrical measurement of the conversion of metal acetates to metal sulfides by hydrogen sulfide, Inorg. Chem., 45; 10467–10471. 
Vismann, B. (1991). Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia, 34(1), 1-27.
Volkel, S., & Berenbrink, M. (2000). Sulphaemoglobin formation in fish: a comparison between the haemoglobin of the sulphide-sensitive rainbow trout (Oncorhynchus mykiss) and of the sulphide-tolerant common carp (Cyprinus carpio), J. Exp. Biol., 203; 1047–1058.