Ahemad , M., & Khan, M.S. (2012). Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol., 62(4); 1531-1540. https://doi.org/10.1007/s13213-011-0407-2
Andriani, L.T., Aini, L.Q., & Hadiastono, T. (2017). Glyphosate biodegradation by plant growth promoting bacteria and their effect to paddy germination in glyphosate contaminated soil. Degrad. Min. Lands Manag., 5(1); 995-1000. https://doi.org/10.15243/jdmlm.2017.051.995
Amorós, I., Alonso, J.L., Romaguera, S., & Carrasco, J.M. (2007). Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water. Chemosphere., 67(11); 2221-2228.https://doi.org/10.1016/j.chemosphere.2006.12.020.
Balthazor, T.M., & Hallas, L.E. (1986). Glyphosate-degrading microorganisms from industrial activated sludge. Appl. Environ. Microbiol., 51(2); 432-434.
Benslama, O., & Boulahrouf, A. (2013). Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria.Afr. J. Microbiol. Res., 7(49); 5587-95. https://doi.org/10.5897/AJMR2013.6080.
Benslama, O., & Boulahrouf, A. (2016). High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics. data., 8; 61-66. http://dx.doi.org/10.1016/j.gdata.2016.03.005
Bhatt, V.K., & Iyer, B.D. (2020). A new spectrophotometric method for the determination of glyphosate: statistical optimization and application in biodegradation studies. International
J. Environ. Sci. Technol., 18(4); 997-1008. https://doi.org/10.1007/s13762-020-02899-3
Bric, J.M., Bostok, RM., & Silverstone, SA. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol., 57, 535-538. Chennappa, G., Adkar-Purushothama, CR., Naik, MK., Suraj, U., & Sreenivasa, MY. (2014). Impact of pesticides on PGPR activity of Azotobacter sp. isolated from pesticide flooded paddy soils. Greener. J. Agric. Sci., 4(4); 117-129. http://dx.doi.org/10.15580/GJAS.2014.4.010314003.
Duke, S.O. (2020). Glyphosate: environmental fate and impact. Weed. Science., 68(3); 201-207. https://doi.org/10.1017/wsc.2019.28
Elarabi, N.I., Abdelhadi, AA., Ahmed, R.H., Saleh, I., Arif, I.A., Osman, G., & Ahmed, D.S. (2020). Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues. Saudi J. Biol. Sci., 27(9); 2207-2214. https://doi.org/10.1016/j.sjbs.2020.06.050
Ermakova, I.T., Shushkova, T.V., Sviridov, A.V., Zelenkova, N.F., Vinokurova, N.G., Baskunov, B.P., & Leontievsky, A.A. (2017). Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch. Microbiol., 199(5); 665-675. https://doi.org/10.1007/s00203-017-1343-8
Fan, J., Guoxia, Y., Haoyu, Z., Guanying, S., Yucong, G., Taiping, H., & Ke T. (2012). Isolation, identifcation and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J. Gen. Appl. Microbiol., 58; 263–271. https://doi.org/10.2323/ jgam.58.263
Firdous, S., Iqbal S., & Anwar S. (2017). Optimization and modelling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. https:// doi.org/10.1016/S1002-0160(17)60381-3
Fu, G.M., Chen, Y., Li, R.Y., Yuan, X.Q., Liu, C.M., Li, B., & Wan, Y. (2017). Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep. Biochem. Biotechnol. https://doi. org/10.1080/10826068.2017.1342260
Gill, JPK., Sethi, N., Mohan, A., Datta, S., & Girdhar, M. (2018). Glyphosate toxicity for animals. Environ. Chem. Lett., 16(2); 401-426. https://doi.org/10.1007/s10311-017-0689-0
Gordon, S.A., & Weber, R.O.P. (1951). Colorimetric estimation of indoleacetic acid. Plant. Physiol., 26(1); 192.
Hadi, F., Mousavi, A., Noghabi, K.A., Tabar, H.G., & Salmanian, A.H. (2013). New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J. Environ. Sci. Health. B., 48; 208– 213. https://doi.org/10.1080/03601234.2013.730319
Hernández-Alomia, F., Ballesteros, I., & Castillejo, P. (2022). Bioremediation potential of glyphosate-degrading microorganisms in eutrophicated Ecuadorian water bodies. Saudi J. Biol. Sci., 29(3); 1550-1558. https://doi.org/10.1016/j.sjbs.2021.11.013
Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol., 63(8); 3233-3241.
Hove-Jensen, B., Zechel, D.L., & Jochimsen, B. (2014). Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol. Mol. Biol. Rev., 78(1); 176-197. https://doi.org/10.1128/MMBR.00040-13
International Agency for Research on Cancer (IARC). (2015). Some organophosphate insecticides and herbicides. IARC, Lyon
Jacob, G.S., Garbow, J.R., Hallas, L.E., Kimack, N.M., Kishore, G.M., & Schaefer, J. (1988). Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl. Environ. Microbiol., 54(12); 2953-2958.
Kaczynski, P., Lozowicka, B., Wolejko, E., Iwaniuk, P., Konecki, R., Dragowski, W., & Pietraszko, A. (2020). Complex study of glyphosate and metabolites influence on enzymatic activity and microorganisms association in soil enriched with Pseudomonas fluorescens and sewage sludge. J. Hazard. Mater., 393; 122443. https://doi.org/10.1016/j.jhazmat.2020.122443
Klimek, M., Lejczak, B., Kafarski, P., & Forlani, G. (2001). Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest. Manag. Sci., 57; 815–821. https:// doi.org/10.1002/ps.366
Koller, V.J., Fürhacker, M., Nersesyan, A., Mišík, M., Eisenbauer, M., & Knasmueller, S. (2012). Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch. Toxicol., 86;805-813. https://doi.org/10.1007/s00204-012-0804-8
Kryuchkova, Y0V., Burygin, G.L., Gogoleva, N.E., Gogolev, Y.V., Chernyshova, M.P., Makarov, O.E., & Turkovskaya, O.V. (2014). Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol. Res., 169(1); 99-105. https://doi.org/10.1016/j.micres.2013.03.002
Krzysko-Lupicka, T., Strof, W., Kubs, K., Skorupa, M., Wieczorek, P., Lejczak, B., & Kafarski, P. (1997). The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl. Microbiol. Biotechnol., 48; 549–552
Kumar, M., Yusuf, M.A., Chauhan, P.S., Nigam, M., & Kumar, M. (2017). Pseudomonas putida and Bacillus amyloliquefaciens alleviates the adverse effect of pesticides and poise soil enzymes activities in chickpea (Cicer arietinum L.) rhizosphere. Trop. Plant. Res., 4(3); 405-418. https://doi.org/10.22271/tpr.2017.v4.i3.054
Lerbs, W., Stock, M., & Parthier, B. (1990). Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch. Microbiol., 153(2); 146-150.
Malviya, B.J., Jadeja, V.J., Sherathiya, H.M., Parakhia, M.V., Tomar, R.S., Vaja, M.B., & Sherathia, D.N. (2015). Bioremediation of glyphosate by bacteria isolated from glyphosate contaminated soil. J. Pure. Appl. Microbiol., 9(4); 3315-3320.
Manogaran, M., Shukor, M.Y., Yasid, N.A., Khalil, K.A., & Ahmad S.A. (2018). Optimisation of culture composition for glyphosate degradation by Burkholderiavietnamiensis strain AQ5-12. 3 Biotech., 8; 108. https://doi.org/10.1007/s13205-018-1123-4
McAulife, K.S., Hallas, L.E., & Kulpa, C.F. (1990). Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J. Ind. Microbiol., 6; 219–221. https://doi.org/10.1007/BF01577700
Melo, C.A., Massenssini, A.M., Passos, A.B.R., Carvalho, F.P., Ferreira, L.R., Silva, A.A., & Costa, M.D. (2016). Isolation and characteristics of sulfentrazone-degrading bacteria. J. Environ. Sci. Health. B. J. ENVIRON. SCI. HEAL. B., 52(2); 115-121. https://doi.org/10.1080/03601234.2016.1248136
Mendiburu, F. (2020). agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae
Mertens, M., Höss, S., Neumann, G., Afzal, J., & Reichenbecher, W. (2018). Glyphosate, a chelating agent—relevant for ecological risk assessment. Environ. Sci. Pollut. Res., 25; 5298-5317. https://doi.org/10.1007/s11356-017-1080-1
Obojska, A., Lejczak, B., & Kubrak, M. (1999). Degradation of phosphonates by streptomycete isolates. Appl. Microbiol. Biotechnol., 51; 872-876.
Obojska, A., Ternan, N.G., Lejczak, B., Kafarski, P., & McMullan, G. (2002). Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl. Environ. Microbiol., 68(4); 2081-2084.
Parakhia, M.V., Tomar, R.S., Dalal, H., Kothari, V.V., Rathod, V.M., & Golakiya, B.A. (2019). Genome sequence analysis and identification of genes associated to pesticide degradation from enterobacter cloacae strain MR2. Int. J. Curr. Microbiol. App. Sci., 8; 2289-2304.
Pipke, R., & Amrhein, N. (1988). Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl. Environ. Microbiol., 54(5); 1293-1296.
Rinaudi, L., Fujishige, N.A., Hirsch, A.M., Banchio, E., Zorreguieta, A., & Giordano, W. (2006). Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res. Microbiol., 157(9); 867-875.
Sanger, F., Nicklen, S., & Coulson, AR. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci., 74(12); 5463-5467.
Shahid, M., & Khan, M. (2018). Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech., 8(2);1-17. https://doi.org/10.1007/s13205-018-1145-y
Shahid, M., Zaidi, A., Ehtram, A., & Khan, M.S. (2019). In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. PESTIC. BIOCHEM. PHYS., 155;33-44. https://doi.org/10.1016/j.pestbp.2019.03.006
Shahid, M., Manoharadas, S., Altaf, M., & Alrefaei, A.F. (2021). Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, and biofilm-formation and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35. ACS omega., 6(8); 5548-5559. https://doi.org/10.1016/j.chemosphere.2021.130372.
Sezen, A., Ozdal, M., Kubra, K.O.C., & Algur, O.F. (2016). Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on improving growth of wheat. J. Appl. Biol. Sci., 10(1); 41-46.
Singh, B., & Singh, K. (2016). Microbial degradation of herbicides. Crit. Rev. Microbiol., 42(2); 245-261. https://doi.org/10.3109/1040841X.2014.929564
Singh, S., Kumar, V., & Singh, J. (2019). Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe(III) and Cu(II) ions. J. Environ. Chem., 7; 103098. https://doi.org/10.1016/j.jece.2019.103098
Sviridov, A.V., Shushkova, T.V., Zelenkova, N.F., Vinokurova, N.G., Morgunov, I.G., Ermakova, I.T., & Leontievsky, A.A. (2012). Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl. Microbiol. Biotechnol., 93; 787–796. https://doi.org/10.1007/s0025 3-011-3485-y.
Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., & Satayavivad, J. (2013). Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol., 59; 129-136. https://doi.org/10.1016/j.fct.2013.05.057
Travaglia, C., Masciarelli, O., Fortuna, J., Marchetti, G., Cardozo, P., Lucero, M., & Reinoso, H. (2015). Towards sustainable maize production: Glyphosate detoxification by Azospirillum sp., & Pseudomonas sp. Crop. Prot., 77; 102-109. https://doi.org/10.1016/j.cropro.2015.07.003
Wijekoon, N., & Yapa, N. (2018). Assessment of plant growth promoting rhizobacteria (PGPR) on potential biodegradation of glyphosate in contaminated soil and aquifers. Groundw. Sustain. Dev., 7; 465-469. https://doi.org/10.1016/j.gsd.2018.02.001
Williams, GM., Kroes, R., & Munro, IC. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol., 31;117–165. https://doi.org/10.1006/rtph.1999.1371
Xu, B., Sun, Q.J., Lan, J.C., Chen, W.M., Hsueh, C.C., & Chen, B.Y. (2019). Exploring the glyphosate-degrading characteristics of a newly isolated, highly adapted indigenous bacterial strain, Providencia rettgeri GDB 1. J. Biosci. Bioeng., 128; 80–87. https://doi.org/10.1016/j.jbios c.2019.01.012
Yu, X.M., Yu, T., Yin, G.H., Dong, Q.L., An, M., Wang, H.R., & Ai, C.X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet. Mol. Res., 14; 14717–14730. https://doi.org/10.4238/2015
Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol., 102; 5033–5043. https ://doi.org/10.1007/s00253-018-9035-0
Zhang, W., Li, J., Zhang, Y., Wu, X., Zhou, Z., Huang, Y., ... & Chen, S. (2022). Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. Journal of Hazardous Materials, 432, 128689. https://doi.org/10.1016/j.jhazmat.2022.128689
Zhao, H., Tao, K., Zhu, J., Liu, S., Gao, H., & Zhou, X. (2015). Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. J. Gen. Appl. Microbiol., 61(5); 165-170. https://doi.org/10.2323/jgam.61.165.