Removal of Congo Red by Waste Fish Scale: Isotherms, Kinetics, Thermodynamics and Optimization Studies

Document Type : Original Research Paper

Authors

Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India

Abstract

Cong-red dye is a precursor of various products of cotton industry and its toxicity in the aquatic environment is a great concern. Present study was highlighted on the efficacy of the fish scale char (FSC) towards removal of congo red from aqueous solution. The prepared FSC was characterized by zero point charge (pHZPC), scanning electron micrograph with elemental analysis (SEM-EDX) and fourier transform infrared (FTIR). Based in the equilibrium and kinetic study, the Langmuir (R2 = 0.967) and Pseudo-second-order (R2 = 1.00) models are appropriate to describe the dye adsorption process. The randomness and exothermic nature of the system were confirmed by the negative values of both entropy and enthalpy, respectively. Finally, optimization by Response Surface Methodology (RSM) study revealed that the experimental data were nicely fitted with central composite design with very high F value (F = 1596.24, p < 0.0001). Perturbation plot suggested that congo-red dye removal is more sensitive with respect to biosorbent dose, pH and initial concentration. The exhausted adsorbent was regenerated with 0.5(M) NaOH solution. Therefore, it can be concluded that fish scale char could be a valuable materials towards purification of industrial effluent. 

Keywords

Main Subjects


Acemioglu, B. (2004). Adsorption of Congo Red from aqueous solution onto calcium-rich fyash. J. Colloid Interface Sci. 274(2), 371–379. https://doi.org/10.1016/j.jcis.2004.03.019 
Aminu, I., Gumel, S.M., Ahmad, W.A., & Idris, A.A. (2020). Adsorption Isotherms and Kinetic Studies of Congo-Red Removal from Waste Water Using Activated Carbon Prepared from Jujube Seed. Am. J. Anal. Chem. 11, 47-59. https://doi.org/10.4236/ajac.2020.111004
Bannerjee, S., & Chattopadhyaya, A.C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian J. Chem. 10, S1629-S1638 https://doi.org/10.1016/j.arabjc.2013.06.005
Begum, H.A., & Kabir, M.H., (2013). Removal of Brilliant Red from Aqueous Solutions by Adsorption on Fish Scales. Dhaka Univ. J. Sci.  61, 7–12. 
Bhaumik, R., Mondal, N.K., Das, B., Roy, P., & Pal, K.C. (2011). Predicting iron adsorption capacity     and thermodynamics onto calcareous soil from aqueous solution by linear regression     and neural network modeling, Universal J. Environ. Res.  Technol. 1(4), 486–499    
Çelekli, A., Al-Nuaimi, A.I., & Bozkurt, H. (2019). Adsorption kinetic and isotherms of Reactive 449 Red 120 on Moringa oleifera seed as an eco-friendly process. J. Mol. Struct. 1195, 168-178.
Chowdhury, S., Chakraborty, S., & Saha, P.D. (2013). Response surface optimization of a     dynamic dye adsorption process: a case study of crystal violet adsorption onto     NaOH-    modified     rice husk.  Environ.  Sci.  Pollut. Res.  20, 1698–1705.
Chattoraj, S., Mondal, N.K., Das, B., Roy, P., & Sadhukhan, B. (2014). Biosorption of carbaryl from     aqueous solution onto Pistia stratiotes biomass, Appl. Water Sci. 4(1), 79–88
Dada, A.O., Olalekan, A., Olatunya, A.M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and     Dubinin Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric     acid modified rice husk. J. Appl. Chem. 3, 38-45.
Das, B., & Mondal, N.K. (2011). Calcareous soil as a new adsorbent to remove lead from aqueous solution: equilibrium, kinetic and thermodynamic study. Universal J. Environ. Res. Technol. 1(4), 515–530.
Das, B., Mondal, N.K., Bhaumik, R., & Roy, P. (2013). Insight into adsorption equilibrium, kinetics and  thermodynamics of lead onto alluvial soil. Int. J. Environ. Sci  Technol.  73, 305-310.
Debnath, P., & Mondal, N.K. (2020). Efective removal of congo red dye from aqueous solution using biosynthesized zinc oxide nanoparticles. Environ. Nanotechnol. Monit. Manag. 14,100320.
Dryaz, A.R., Shaban, M., AlMohamadi, H., Khulood, A., Abu Al-Ola, Hamd, A., Soliman, N.K., Sayed, A., & Ahmed, S.A. (2021). Design, characterization, and adsorption properties of Padina gymnospora/zeolite nanocomposite for Congo Red dye removal from wastewater. Sci Rep 11:21058. https://doi.org/10.1038/s41598-021-00025-y.
Govindaraj, P., Gnanavelraja, N., Subramanian, T., & Balji, B.G. (2018). Eco-friendly method to detoxify dyes from textile efuent using bricks kiln chamber fly ash as adsorbent. Int. J. Appl. Eng. Res. 13(14), 11693-11700.
Guo, Y., Qi, J., Yang, S., Yu, K., Wang, Z., & Xu, H. (2002). Adsorption of Cr(VI) on micro and mesoporous rice husk-based active carbon. Mater. Chem. Phys. 78(1), 132–137.
Gurav, R., Bhatia, S.K., Choi, T-R., Choi, Y-K., Kim,  H.J., Song, H-S., Lee,  S.M., Park, S.L., Lee, H.S., Koh, J., Jeon,  J-M., Yoon, J-J., & Yang, Y-H. (2021) Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 264(2), 128539, https://doi.org/10.1016/j.chemosphere.2020.128539
Harja, M., Buema, G., & Bucur, D. (2022). Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 12, 6087.  https://doi.org/10.1038/s41598-022-10093-3
Harja, M.http://www.pjoes.com/Author-Van Tan-Lam/141238, Buema, G., & Bucur, D. (2022). Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Report 12, 6087. https://doi.org/10.1038/s41598- 022-10093-3 
Lam, V.T., Dao, To-Uyen. T., Nguyen, H-T. T., Nguyen, D.T.C., Le, H.T.N., Nguyen, H.T.T., Do, Sy T., & Loc, H.H. (2021).  Process Optimization Studies of Congo Red Dye Adsorption onto Magnesium Aluminium Layered Double Hydroxide Using Response Surface Methodology. Pol. J. Environ. Stud. 30(1), 679–687. https://doi.org/10.15244/pjoes/121048
Harja, M., Lupu, N., Chiriac, H., Herea, D-D., & Buema, G. (2022). Studies on the Removal of Congo Red Dye by an Adsorbent Based on Fly-Ash@Fe3O4 Mixture. Magnetochem.  8, 125. https://doi.org/10.3390/ magnetochemistry8100125
Han, M., Xu, B.,  Zhang, M.,  Yao, J.,  Li, Q.,  Chen, W.,  & Zhou, W. (2021). Preparation of biologically reduced graphene oxide-based aerogel and its application in dye adsorption. Sci. Total Environ. 783, 147028. https://doi.org/10.1016/j.scitotenv.2021.147028
Islam, M.A., Ali, I., Karim, S.M.A., Firoz, H.M.S., Chowdhury, A-N., Morton, D.W., & Angove, M.J. (2019). Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process Eng. 32, 100911. https://doi.org/10.1016/j.jwpe.2019.100911.
Jaafar, A., Darchen, A., Driouich, A., Lakbaibi, Z.,  Boussaoud, A., Chatib, B., Laftani, Y., Makhfouk, M.El., & Hachkar, M. (2022). Fish scale of Sardina pilchardus as a biosorbent for the removal of Ponceau S dye from water: Experimental, designing and Monte Carlo investigations. Inorg. Chem. Commun. 137, 109196. https://doi.org/10.1016/j.inoche.2022.109196
Januário, E.F.D.,  Vidovix, T.B., de Camargo Lima, B.N., Paixão, R.M., da Silva, L.H.B.R., Homem,  N.C., Bergamasco, R., & Vieira, A.M.S. (2021). Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Sci. Total Environ. 789, 147957. https://doi.org/10.1016/j.scitotenv.2021.147957.
Jabar, J.M., Odusote, Y.A., Alabi, K.A., & Ahmed, I.B. (2020). Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Appl. Water Sci. 10, 136 (2020). https://doi.org/10.1007/s13201-020-01221-3
Jawad, A.H., & Abdulhameed, A.S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surf. Interfaces 18, 100422. https://doi.org/10.1016/j.surfin.2019.100422.
Kabir, S.M.F., Cueto, R., Romeo, S.L.D.B., Kuttruff, J.T.,  Marx, B.D., & Negulescu, I.I. (2019). Removal of Acid Dyes from Textile Wastewaters Using Fish Scales by Absorption Process. Clean Technol.  1, 311-324. doi:10.3390/cleantechnol1010021
Khedmati, M., Khodaii, A., & Haghshenas, H.F. (2017). A study on moisture susceptibility of  stone matrix warm mix asphalt. Constr Build. Mater. 144, 42–49. https://doi.org/ 10.1016/j.conbuildmat.2017.03.121. 
Karimifard, S., & Moghaddam, M.R.A. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci. Total Environ. 640-641, 772-797. https://doi.org/10.1016/j.scitotenv.2018.05.355.
Karaman, C.,  Karaman, O.,  Show, P-L.,  Karimi-Maleh, H.,  & Zare, N. (2022). Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 290, 133346. https://doi.org/10.1016/j.chemosphere.2021.133346.
Kim, E-J., Bhatia, S.K., Song, J.H., Yoo, E., Jeon, J.H., Yoon, J-Y., Yang, Y., Gurav, R., Yang, Y-H., Kim, J.H., & Choi, Y-K. (2020). Adsorptive removal of tetracycline from 467 aqueous solution by maple leaf-derived biochar. Bioresour. Technol. 123092
Kumar, M.P.S., & Phanikumar, B.R. (2013). Response surface modelling of Cr6+ adsorption from     aqueous solution by neem bark powder: Box–Behnken experimental approach. Environ.     Sci.  Pollut.  Res.  20, 1327–1343.
Mall, I.D., Srivastava, V.C., Agarwal, N.K., & Mishra, I.M. (2005). Removal of Congo Red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere 61(4), 492–501. https://doi.org/10.1016/j.chemo sphere.2005.03.065.
Mall, I.D., Srivastava, V.C., Agarwal, N.K., & Mishra, I.M. (2005). Removal of Congo Red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere 61(4), 492–501. https://doi.org/10.1016/j.chemosphere.2005.03.065
Marrakchi, F., Ahmed, M.J., Khanday, W., Asif, M., & Hameed, B. (2017). Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J. Taiwan Inst. Chem. Eng. 71, 47–54.
Mondal, N.K., Roy, P., Sen, K., Mondal, A., & Debnath, P. (2023). Low-cost fluoride adsorbent prepared from renewable bio-waste: Synthesis, characterization and optimization studies. Pollution https://doi.org/10.22059/POLL.2023.351595.1699
Mondal, M.K. (2010). Removal of Pb(II) from aqueous solution by adsorption using activated tea waste. Korean J. Chem. Eng. 27(1), 144–151
Neves, C., Scheufele, F., Nardino, A., Vieira, M., da Silva, M., Módenes, A., & Borba, C. (2018). Phenomenological modeling of reactive dye adsorption onto fish scales surface in the presence of electrolyte and surfactant mixtures. Environ. Technol. 39, 2467–2483.
Nguyen, T.T.T., Hoang, D.Q., Nguyen, D.T.C., & Tran, T.V. (2022). Adsorptive Optimization of Crystal Violet Dye Using Central Composite Rotatable Design and Response Surface Methodology: Statistical Analysis, Kinetic and Isotherm Studies. Arab J. Sci. Eng. 17, 1-14. https://doi.org/10.1007/s13369-022-07391-3.
Oloo, C.M.,  Onyari, J.M., Wanyonyi, W.C.,  Wabomba, J.N.,  & Muinde, V.M. (2020). Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environ. Chem. Ecotoxicol. 2, 64-72. https://doi.org/10.1016/j.enceco.2020.05.001.
Ranjan, D., Talat, M., & Hasan, S.H. (2009). Rice polish, an alternative to conventional adsorbents     for treating arsenic bearing water by up–flow column method. Ind. Eng. Chem. Res. 48(23), 10180–10185.
Roy, P., Mondal, N.K., Bhattacharya, S., Das, B., & Das, K. (2014). Removal of arsenic (III) and     arsenic (V) on chemically modified low-cost adsorbent: batch and column operations. Appl.  Water Sci.  3, 293–309. 
Roy, T.K., Mondal, N.K., & Mitra, P. (2022). Efficacy of Mn-doped ZnO towards Removal of Congo Red Dye under UV Exposure: Isotherm, Kinetics, Thermodynamics and Optimization Study. Pollution 9(2), 513-530. http://doi.org/10.22059/POLL.2022.346963.1568
Sadhukhan, B., Mondal, N.K., & Chattoraj, S. (2014). Biosorptive removal of cationic dye from aqueous system, a response surface methodological approach. Clean Technol. Environ. Policy 16, 1015–1025. https://doi.org/10.1007/s10098-013-0701-8
Sadhukhan, B., Mondal, N.K., & Chattaraj, S. (2016). Optimization using central composite design     (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Kerbala Int. J. Modern Sci. 2(3), 145-155. https//doi.org/10.1016/jkijoms.2016.03.005
Saleh, S.M., Maarof, H.I., Rahim, S.N.S.A.,  & Nasuha, N. (2012). Adsorption of Congo Red onto bottom ash. J. Appl. Sci. 12(11), 1181–1185. https://doi.org/10.3923/jas.2012.1181.1185.
Saqib, A.N.S., Waseem, A., Khan, A.F., Mahmood, Q., Khan, A., Habib, A., & Khan, A.R.(2013). Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecol. Eng.  51, 88–94 https://doi.org/10.1016/j.ecoleng.2012.12.063
Samarghandi, M.R., Hadi, M., Moayedi, S., & Askari, F.B. (2009). Two parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran J. Environ. Health Sci. Eng. 6, 285-294.
Saravanan, A.,  Karishma,  S.,  Senthil Kumar,  Varjani, S.P.,  Yaashikaa,  P.R., Jeevanantham, Ramamurthy, S.R., & Reshma, B. (2021). Simultaneous removal of Cu(II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. Chemosphere 271, 129519. https://doi.org/10.1016/j.chemosphere.2020.129519.
Satapathy, M., Prangya, R., Dash, R., & Aditya, K. (2020). Removal of textile 545 dyes from aqueous solutions by dolochar: equilibrium, kinetic, and thermodynamic studies. J. Hazard. Toxic Radioact. Waste 24(3), 04020015. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000509
Sen, K., & Mondal, N.K. (2022). Glyphosate adsorptive behaviour using magnetic activated carbon: kinetics, isotherms, and DFT study. Biomass Conv. Bioref . https://doi.org/10.1007/s13399-021-02193-3
Sen, K., Datta, J.K., & Mondal, N.K. (2021). Box–Behnken optimization of glyphosate adsorption on to biofabricated calcium hydroxyapatite: kinetic, isotherm, thermodynamic studies. Appl. Nanosci. 11, 687–697. https://doi.org/10.1007/s13204-020-01612-7
Sonar, S.K., Niphadkar, P.S., Mayadevi, S., & Joshi, P.N. (2014). Preparation and characterization of     porous fly ash/NiFe2O4 composite: Promising adsorbent for the removal of Congo Red dye from     aqueous solution. Mater. Chem. Phys. 148(1-2), 371–379. https:// https://doi.org/10.1016/j.matchemphys.2014.07.057 
Vyavahare, G., Jadhav, P., Jadhav, J., Patil, R., Aware, C., Patil, D., Gophane, A., Yang, Y-H., & Gurav, R. (2019). Strategies for crystal violet dye sorption on biochar derived from mango 558 leaves and evaluation of residual dye toxicity. J. Clean Prod. 207, 296-305. https://doi.org/10.1016/j.jclepro.2018.09.193
Vijayakumar, G., Tamilarasan, R., & Dharmendirakumar, M. (2012). Adsorption, Kinetic Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J.  Mater.  Environ. Sci. 3, 157-170.
Vijayaraghavan, K., Mahadevan, A., Umid, M.J., & Balasubramanian, R. (2009). Biosorption of As(V) onto the shells of the crab (Portunus sanguinolentus), equilibrium and kinetic studies. Ind.  Eng. Chem. Res. 48(7), 3589–3594.
Wanyonyi, W.C., Onyari, J.M., & Shiundu, P.M. (2014). Adsorption of Congo Red Dye from Aqueous Solutions Using Roots of Eichhornia crassipes: Kinetic and Equilibrium Studies. Energy Procedia 50, 862 – 869. https://doi.org/10.1016/j.egypro.2014.06.105
Wekoye, J.N., Wanyonyi, W.C.,   Wangila, P.T., & Tonui, M.K. (2020). Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ. Chem. Ecotoxicol. 2, 24-31. https://doi.org/10.1016/j.enceco.2020.01.004.
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 160, 150–160. https://doi.org/10.1016/j.biortech.2014.01.021.
Yadav, M., Thakore, S., & Jadeja, R. (2021). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environ. Chem. Ecotoxicol. 4, 67-77. https://doi.org/10.1016/j.enceco.2021.12.003.
Yang, Y., Nguyen, T.M.P., Van, H.T., Nguyen, Q.T., Nguyen, T.H., Nguyen, T.B.L., Hoang, Le, P., Thanh, D.V., Nguyen, T.V., Nguyen, V.Q., Thang, P.Q., Yılmaz, M., & Giang, Le. V. (2022). ZnO nanoparticles loaded rice husk biochar as an effective adsorbent for removing reactive red 24 from aqueous solution. Mater. Sci. Semicond. 150, 106960. https://doi.org/10.1016/j.mssp.2022.106960.
Zhu, K., Gong, X., He, D., Li, B., Ji, D., Li, P., Peng, Z., & Luo, Y. (2013). Adsorption of Ponceau 4R from aqueous solutions using alkali boiled Tilapia fish scales. RSC Adv. 3, 25221–25230.