Pirouzmand, M., Asadi, M. & Mohammadi, A. (2018). The remarkable activity of template-containing Mg/MCM-41 and Ni/MCM-41 in CO2 sequestration, Greenhouse Gas Sci Technol., 8 (3): 462-468.
Wang, L., Yi, Y., Guo, H. & Tu, X. (2018). Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2, ACS Catal., 8: 90−100.
Zhang, X., Huang, B., Sun, C., Lu, W., Tian, Z., Shen, P.K., Wang, H., Zhao, D. & MacFarlane, D.R. (2018). Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO2 to Alcohol, ACS Energy Lett., 3 (11): 2649–2655.
Roy, S., Cherevotan, A. & Peter, S.C. (2018). Thermochemical CO2 Hydrogenation to Single Carbon Products: Scientific and Technological Challenges, ACS Energy Lett., 3 (8): 1938–1966.
Singh, R., Singh, R., Dakshinamurthy, S., kondaveeti, S., Kim, T., Li, J., Sung, B.H., Cho, B.K., Kim, D.R., Kim, S.C., Kalia, V.C., Zhang, Y.H.P., Zhao, H., Kang, Y.C. & Lee, J.K. (2018). Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction, ACS Catal., 8 (12): 11085–11093.
Pirouzmand, M., Nikzad-Kojanag, B. & Hosseini-Yazdi, S.A. (2016). Catalytic Capture of CO2 with Template-Containing Zn/MCM-41 and Its Transformation to Solid Carbonate, J. Braz. Chem. Soc., 27 (12): 2354-2360.
Kim, S.M., Abdala, P.M., Broda, M., Hosseini, D., Copéret, C. & Müller, C. (2018). Integrated CO2 Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases, ACS Catal., 8 (4): 2815–2823
Wang, F., Lu, Z., Guo, H., Zhang, G., Li, Y., Hu, Y., Jiang, W. & Liu, G. (2023). Plasmonic Photocatalysis for CO2 Reduction: Advances, Understanding and Possibilities, Chemistry—A European Journal, 29 (25) e202202716.
Liu, P., Peng, X., Men, Y.L. & Pan, Y.X. (2020). Recent progresses on improving CO2 adsorption and proton production for enhancing efficiency of photocatalytic CO2 reduction by H2O, Green Chemical Engineering, 1 (1) 33-39.
Nosrati, A., Javanshir, S., Feyzi, F. & Amirnejat, S. (2023). Effective CO2 Capture and Selective Photocatalytic Conversion into CH3OH by Hierarchical Nanostructured GO–TiO2–Ag2O and GO–TiO2–Ag2O–Arg, ACS Omega, 8 (4): 3981–3991.
Li, K. & G Chen, J. (2019). CO2 Hydrogenation to Methanol over ZrO2-Containing Catalysts: Insights into ZrO2 Induced Synergy, ACS Catal., 9 (9): 7840–7861.
Li, M.M.J., Chen, C., Ayvali, T., Suo, H., Zheng, J., Teixeira, I., Ye, L., Zou, H., O’Hare, D. & Tsang, S.C.E. (2018). CO2 Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors, ACS Catal., 8 (5): 4390–4401.
Liu, P., Zou. X., Meng. X. Y., Peng. C., Li. X., Wang. Y., Zhao. F. & Pan. Y. X. (2022). Tuning product selectivity of CO2 hydrogenation by OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts, AlChE J., 69 (6): e18016.
Brethomé, E.M., Williams, N.J., Seipp, C.A., Kidder M.K. & Custelcean, R. (2018). Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power, Nature Energy, 3: 553–559.
Abdullatif, Y., Sodiq, A., Mir, N., Bicer, Y., Al-Ansari, T., El-Naas M.H. & Amhamed, A.I. (2023). Emerging trends in direct air capture of CO2: a review of technology options targeting net-zero emissions, RSC Adv., 13: 5687.
Sodiq, A., Abdullatif, Y., Aissa, B., Ostovar, A., Nassar, N., El-Naas, M.H. & Amhamed, A.I. (2023). A review on progress made in direct air capture of CO2, Environmental Technology & Innovation, 29: 102991.
Hack. J., Maeda. N. & Meier. D. M. (2022). Review on CO2 Capture Using Amine-Functionalized Materials, ACS Omega, 7 (44): 39520–39530.
Gao, F., Ji, C., Wang, S., Wang, W., Dong, J., Guo, C., Gao Y. & Chen, G. (2022). Sterically hindered amine-functionalized MCM-41 composite for efficient carbon dioxide capture, Korean Journal of Chemical Engineering, 39: 1981–1988.
Muchan, P., Saiwan C. &Nithitanakul, M. (2022). Carbon dioxide adsorption/desorption performance of single- and blended-amines-impregnated MCM-41 mesoporous silica in post-combustion carbon capture, Clean Energy, 6: 424–437.
Mukherjee, S., Akshay. & Samanta, A.N. (2019). Amine-impregnated MCM-41 in post-combustion CO2 capture: Synthesis, characterization, isotherm modelling, Advanced Powder Technology, 30 (12): 3231-3240.
Asadi, M. & Azordeh, S. (2020). Removal of Heavy Metals Pb2+ and Cd2+ from Water with Nano-Porous Materials, Nashrie Shimi ve Mohandesi Shimi Iran, 39 (4): 13-23.
Anbia, M., Çelik, M.S., Ghorbani, F., & Younesi, H. (2013). Aqueous Cadmium Ions Removal by Adsorption on APTMS Grafted Mesoporous Silica MCM-41 in Batch and Fixed Bed Column Processes, IJE Transaction B: Applications, 26 (5): 473-488.
Miricioiu, M.G., Iacob, C., Nechifor G. & Niculescu, V.C. (2019). High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix, Front. Chem., 7: 332.
Xu, X., Song, K., Guo, J., Liu, S., Zhou X. & He, J. (2023). Adsorption behavior of amino functionalized MCM-41 on chlorogenic acid from Eucommia ulmoides leaves, Journal of Porous Materials, 30: 71–81.
Siqueira, T.A., Iglesias R.S. & Ketzer, M.K. (2017). Carbon dioxide injection in carbonate reservoirs – a review of CO2-water-rock interaction studies, Greenhouse Gas Sci Technol., 7 (5): 802-816.
Ben Said, R., Kolle, J.M., Essalah, K., Tangour, B. & Sayari, A. (2020). A unified approach to CO2–amine reaction mechanisms, ACS Omega, 5 (40): 26125-26133.