Abdel daiem, M. M., Hatata, A., Galal, O. H., Said, N., & Ahmed, D. (2021a). Prediction of biogas production from anaerobic Co-digestion of Waste Activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy, 178, 226–240. https://doi.org/10.1016/j.renene.2021.06.050
Abdel daiem, M. M., Hatata, A., Galal, O. H., Said, N., & Ahmed, D. (2021b). Prediction of biogas production from anaerobic Co-digestion of Waste Activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy, 178, 226–240. https://doi.org/10.1016/j.renene.2021.06.050
Alam, M. N. (2016). Codes in MATLAB for Training Artificial Neural Network using Particle Swarm Optimization Cochlear Implant View project Application of operation research on solving electrical engineering problems View project Codes in MATLAB for Training Artificial Neural Network using Particle Swarm Optimization. https://doi.org/10.13140/RG.2.1.2579.3524
Antonio, R., Universidad, V., México, L. S., Garro, B. A., Sossa, H., & Vázquez, R. A. (2011). Back-Propagation vs Particle Swarm Optimization Algorithm: which Algorithm is better to adjust the Synaptic Weights of a Feed-Forward ANN? In Article in International Journal of Artificial Intelligence. www.ceser.in/ijai.html
Betiku, E., Okunsolawo, S. S., Ajala, S. O., & Odedele, O. S. (2015). Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. In Renewable Energy (Vol. 76, pp. 408–417). Elsevier Ltd. https://doi.org/10.1016/j.renene.2014.11.049
Chen, W. Y., Chan, Y. J., Lim, J. W., Liew, C. S., Mohamad, M., Ho, C. D., Usman, A., Lisak, G., Hara, H., & Tan, W. N. (2022). Artificial Neural Network (ANN) Modelling for Biogas Production in Pre-Commercialized Integrated Anaerobic-Aerobic Bioreactors (IAAB). Water (Switzerland), 14(9). https://doi.org/10.3390/w14091410
Dach, J., Koszela, K., Boniecki, P., Zaborowicz, M., Lewicki, A., Czekała, W., Skwarcz, J., Qiao, W., Piekarska-Boniecka, H., & Białobrzewski, I. (2016). The use of neural modelling to estimate the methane production from slurry fermentation processes. In Renewable and Sustainable Energy Reviews (Vol. 56, pp. 603–610). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.11.093
Dahunsi, S. O., Oranusi, S., Owolabi, J. B., & Efeovbokhan, V. E. (2016a). Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: Modelling and process parameter optimization study. Bioresource Technology, 216, 587–600. https://doi.org/10.1016/j.biortech.2016.05.118
Dahunsi, S. O., Oranusi, S., Owolabi, J. B., & Efeovbokhan, V. E. (2016b). Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: Modelling and process parameter optimization study. Bioresource Technology, 216, 587–600. https://doi.org/10.1016/j.biortech.2016.05.118
García-Gen, S., Rodríguez, J., & Lema, J. M. (2014). Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming. Bioresource Technology, 173, 159–167. https://doi.org/10.1016/j.biortech.2014.09.089
Intharathirat, R., Abdul Salam, P., Kumar, S., & Untong, A. (2015). Forecasting of municipal solid waste quantity in a developing country using multivariate grey models. Waste Management, 39, 3–14. https://doi.org/10.1016/j.wasman.2015.01.026
Kumar, S., Sau, S., Pal, D., Tudu, B., Mandal, K. K., & Chakraborty, N. (2013). Parametric performance evaluation of different types of particle swarm optimization techniques applied in distributed generation system. Advances in Intelligent Systems and Computing, 199 AISC, 349–356. https://doi.org/10.1007/978-3-642-35314-7_40
Le, L. T., Nguyen, H., Dou, J., & Zhou, J. (2019). A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Applied Sciences (Switzerland), 9(13). https://doi.org/10.3390/app9132630
Momčilović, A. J., Stefanović, G. M., Rajković, P. M., Stojković, N. V., Milutinović, B. B., & Ivanović, M. P. (2018). The organic waste fractions ratio optimization in the anaerobic co-digestion process for the increase of biogas yield. Thermal Science, 22, S1525–S1534. https://doi.org/10.2298/TSCI18S5525M
Mougari, N. E., Largeau, J. F., Himrane, N., Hachemi, M., & Tazerout, M. (2021). Application of artificial neural network and kinetic modeling for the prediction of biogas and methane production in anaerobic digestion of several organic wastes. International Journal of Green Energy, 18(15), 1584–1596. https://doi.org/10.1080/15435075.2021.1914630
Nguyen, H., Moayedi, H., Foong, L. K., Al Najjar, H. A. H., Jusoh, W. A. W., Rashid, A. S. A., & Jamali, J. (2020). Optimizing ANN models with PSO for predicting short building seismic response. Engineering with Computers, 36(3), 823–837. https://doi.org/10.1007/s00366-019-00733-0
Olden, J. D., & Jackson, D. A. (2002). Illuminating the “‘black box’”: a randomization approach for understanding variable contributions in artificial neural networks. In Ecological Modelling (Vol. 154). www.elsevier.com/locate/ecolmodel
Putro, L. H. S., Budianta, D., Rohendi, D., & Rejo, A. (2020). Modeling methane emission of wastewater Anaerobic pond at Palm oil mill using radial basis function neural network. International Journal on Advanced Science, Engineering and Information Technology, 1, 260–268. https://doi.org/10.18517/ijaseit.10.1.9577
Ramachandran, A., Rustum, R., & Adeloye, A. J. (2019). Review of anaerobic digestion modeling and optimization using nature-inspired techniques. In Processes (Vol. 7, Issue 12). MDPI AG. https://doi.org/10.3390/PR7120953
Saghouri, M., Abdi, R., Ebrahimi-Nik, M., Rohani, A., & Maysami, M. (2020). Modeling and optimization of biomethane production from solid-state anaerobic co-digestion of organic fraction municipal solid waste and other co-substrates. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1767728
Sathish, S., & Vivekanandan, S. (2016). Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network. Alexandria Engineering Journal, 55(4), 3297–3307. https://doi.org/10.1016/j.aej.2016.08.010
Shroff, K. C., & Shah, N. G. (2023). The Performance Evaluation and Process Optimization of Anaerobic Co-digestion of OFMSW with Bio-flocculated Sludge from Secondary Settling Tank: A Key to Integrated Solid–Liquid Waste Management. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-023-02176-7
Strik, D. P. B. T. B., Domnanovich, A. M., Zani, L., Braun, R., & Holubar, P. (2005). Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox. Environmental Modelling and Software, 20(6), 803–810. https://doi.org/10.1016/j.envsoft.2004.09.006
Yang, J., Lu, L., Ouyang, W., Gou, Y., Chen, Y., Ma, H., Guo, J., & Fang, F. (2017). Estimation of kinetic parameters of an anaerobic digestion model using particle swarm optimization. Biochemical Engineering Journal, 120, 25–32. https://doi.org/10.1016/j.bej.2016.12.022