Urban Air Quality Nexus: PM2.5 Bound-Heavy Metals and their Alarming Implication for Incremental Lifetime Cancer Risk

Document Type : Original Research Paper

Authors

1 Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan

2 Faculty of Engineering and Quantity Surveying, INTI International University, Putra Nilai 71800, Malaysia

3 Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan

4 Department of Allied Health Sciences, Riphah International University, Islamabad, Pakistan

5 Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan

6 Department of Environmental Sciences, National College of Business Administration and Economics (NCBA&E), Lahore 54000 Pakistan

7 Department of Environmental Sciences, Forman Christian College A Chartered University, Lahore 54000 Pakistan

Abstract

Fine particulate matter (PM2.5) have not only detrimental impacts on air quality but also acts as a source for a range of heavy metals that worsen the potential risks to public health. Notably, previous studies on PM2.5-bound heavy metals in Pakistan have primarily focused on individual cities. This study offers a comprehensive analysis of pollution characteristics related to PM2.5-bound heavy metals, including lead (Pb), cadmium (Cd), zinc (Zn), and nickel (Ni), in ten cities of Pakistan. Data was collected from a wide range of reliable sources spanning from 2013 to 2023. Additionally, the human health risk assessment methodology endorsed by the United States Environmental Protection Agency (US EPA) was employed to evaluate both carcinogenic and non-carcinogenic risks for adults (males and females) and children. Findings of the present study revealed that children faced a greater risk associated with PM2.5-bound heavy metals as compared to adults. Cadmium, zinc, and nickel were found as the top three contributors to the average non-carcinogenic risk, while lead, cadmium, and nickel showed the highest carcinogenic risks. Based on these findings, this study strongly recommend that the government should strengthen the management of industrial and vehicular emissions. Furthermore, there is an imperative need to establish a real-time monitoring system capable of tracking toxic heavy metal pollutants transported through the atmosphere. Additionally, policymakers should seriously contemplate regional collaborations with the goal of creating metropolitan initiatives for pollution control, thereby effectively addressing these paramount environmental and public health concerns.

Keywords

Main Subjects


Ahmad, M., Manjantrarat, T., Rattanawongsa, W., Muensri, P., Saenmuangchin, R., Klamchuen, A., & Panyametheekul, S. (2022). Chemical composition, sources, and health risk assessment of PM2.5 and PM10 in urban sites of Bangkok, Thailand. Int. J. Environ. Res. Public Health., 19(21); 14281.
Ahmad, M., Yu, Q., Chen, J., Cheng, S., Qin, W., & Zhang, Y. (2021). Chemical characteristics, oxidative potential, and sources of PM2.5 in wintertime in Lahore and Peshawar, Pakistan. J. Environ. Sci., 102; 148–158.
Alves, C., Evtyugina, M., Vicente, E., Vicente, A., Rienda, I. C., de la Campa, A. S., Tomé, M., & Duarte, I. (2023). PM2.5 chemical composition and health risks by inhalation near a chemical complex. J. Environ. Sci., 124; 860–874.
Anjum, M. S., Ali, S. M., Subhani, M. A., Anwar, M. N., Nizami, A. S., Ashraf, U., & Khokhar, M. F. (2021). An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan; a critical review. J. Hazard. Mater., 402; 123943.
Asian Development Bank. (2015). Initial Environmental Examination Review. retrieved from 46377-002: Sangar to Mirpurkhas Road - Initial Environmental Examination (adb.org)
Awan, M. A., Ahmed, S. H., Aslam, M. R., Qazi, I. A., & Baig, M. A. (2013). Determination of heavy metals in ambient air particulate matter using laser-induced breakdown spectroscopy. Arab J Sci Eng., 38; 1655-1661.
Brodny, J., & Tutak, M. (2021). The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod., 279; 123641.
Cheng, X., Huang, Y., Long, Z., Ni, S., Shi, Z., & Zhang, C. (2017). Characteristics, sources and health risk assessment of trace metals in PM 10 in Panzhihua, China. Bull Environ Contam Toxicol., 98; 76-83.
Han, Y., Wang, Z., Zhou, J., Che, H., Tian, M., Wang, H., & Chen, Y. (2021). PM2. 5-bound heavy metals in Southwestern China: characterization, sources, and health risks. Atmosphere., 12(7); 929.
Hisamuddin, N. H., Jalaludin, J., Yusof, A. N., & Tualeka, A. R. (2020). Genotoxic effects of exposure to urban traffic related air pollutants on children in Klang Valley, Malaysia. Aerosol Air Qual Res., 20(12); 2614-2623.
Javed, W., Wexler, A. S., Murtaza, G., Ahmad, H. R., & Basra, S. M. (2015). Spatial, temporal and size distribution of particulate matter and its chemical constituents in Faisalabad, Pakistan. Atmosphere., 28(2); 99-116.
Khalid, S. (2019). Phytomonitoring of air pollution around brick kilns in Balochistan province Pakistan through air pollution index and metal accumulation index. J. Clean. Prod., 229; 727-738.
Khan, M. K., Saied, S., Mohiuddin, S., Masood, S. S., Siddique, A., Hussain, M. M., & Khwaja, H. A. (2019). Air quality assessment at industrial cum residential areas of Karachi city in context of PM2.5. IJEEG., 21-27.
Li, W., Shao, L., Li, Z., Li, H., Gao, J., Li, J., Zhang, H., Zhang, Z., Silva, L. F. O., Zhang, M., Chen, Y., & Oliveira, M. L. S. (2022). Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS. Gondwana Res., 110; 305–318.
Li, Y. P., Liu, H. F., Zhou, H., Fan, Z., Zhang, Z., & Zou, C. (2015). Contamination characteristics and health risk assessment of toxic heavy metals in PM2.5 in Chengdu. China Environ. Sci., 35(7); 2225-2232.
Lima, B. D., Teixeira, E. C., Hower, J. C., Civeira, M. S., Ramírez, O., Yang, C., Oliveira, M. L. S., & Silva, L. F. O. (2021). Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geosci. Front., 12(3); 101129.
Liu, P., Ren, H., Xu, H., Lei, Y., & Shen, Z. (2018). Assessment of heavy metal characteristics and health risks associated with PM 2.5 in Xi’an, the largest city in northwestern China. Air Qual. Atmos. Health., 11; 1037-1047.
Liu, X., Wang, Z., Bai, H., Zhang, S., Mu, L., & Peng, L. (2020). Characteristics and health risk assessments of heavy metals in PM 2.5 in Taiyuan and Yuci college town, China. Air Qual. Atmos. Health., 13; 909-919.
Liu, Y., Li, C., Zhang, C., Liu, X., Qu, Y., An, J., Ma, D., Feng, M., & Tan, Q. (2020). Chemical characteristics, source apportionment, and regional contribution of PM2.5 in Zhangjiakou, Northern China: a multiple sampling sites observation and modelling perspective. Environ. Adv., 3; 100034.
Lv, D., Chen, Y., Zhu, T., Li, T., Shen, F., Li, X., & Mehmood, T. (2019). The pollution characteristics of PM10 and PM2.5 during summer and winter in Beijing, Suning and Islamabad. Atmos. Pollut. Res., 10; 1159–1164
Malhi, H. M., Ahmed, I., Nasim, I., Khurshid, I., Haider, R., Nawaz, R., & Shah, S. I. H. (2023). Monitoring of Ambient Air Pollutionin Lahore City. PJEST., 4(3); 1-9.
Moryani, H. T., Kong, S., Du, J., & Bao, J. (2020). Health risk assessment of heavy metals accumulated on PM2. 5 fractioned road dust from two cities of Pakistan. Int. J. Environ. Res. Public Health., 17(19); 7124.
Nair, M., Bherwani, H., Kumar, S., Gulia, S., Goyal, S. K., & Kumar, R. (2020). Assessment of the contribution of agricultural residue burning on air quality of Delhi using remote sensing and modelling tools. Atmos. Environ., 230; 117504
Nawaz, R., Ashraf, A., Nasim, I., Irshad, M. A., Zaman, Q. U., & Latif, M. (2023). Assessing the Status of Air Pollution in the selected Cities of Pakistan. Pollution., 9(1); 381-391.
Nawaz, R., Aslam, M., Nasim, I., Irshad, M. A., Ahmad, S., Latif, M., & Hussain, F. (2022). Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore. Air., 1(1); 55-68.
Nguyen, T. P. M., Bui, T. H., Nguyen, M. K., Ta, T. N., Tran, T. M. H., Nguyen, Y. N., & Nguyen, T. H. 
(2022). Assessing pollution characteristics and human health risk of exposure to PM2. 5-bound trace metals in a suburban area in Hanoi, Vietnam. HERA., 28(4); 433-454.
Pongpiachan, S., Liu, S., Huang, R., Zhao, Z., Palakun, J., Kositanont, C., & Cao, J. (2017). Variation in day-of-week and seasonal concentrations of atmospheric PM 2.5-bound metals and associated health risks in Bangkok, Thailand. Arch. Environ. Contam. Toxicol., 72; 364-379.
Sahu, S. K., Mangaraj, P., Beig, G., Tyagi, B., Tikle, S., & Vinoj, V. (2021). Establishing a link between fine particulate matter (PM2.5) zones and COVID-19 over India based on anthropogenic emission sources and air quality data. Urban Climate., 38; 100883
Schwela, D. H., & Haq, G. (2020). Strengths and weaknesses of the WHO urban air pollutant database. Aerosol Air Qual Res., 20; 1026–1037.
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Ramirez-Santa Cruz, C., Bauer, H., & Puxbaum, H. 
(2016). Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi–Pakistan. Atmos. Environ., 128; 114-123.
Silva, L. F., Schneider, I. L., Artaxo, P., Nunez-Blanco, Y., Pinto, D., Flores, E. M., Gomez-Plata, L., Ramírez, O., & Dotto, G. L. (2022). Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geosci Front., 13; 101115
Subhanullah, M., Ullah, S., Javed, M. F., Ullah, R., Akbar, T. A., Ullah, W., & Sajjad, R. U. (2022). Assessment and impacts of air pollution from brick kilns on public health in northern pakistan. Atmosphere., 13(8); 1231.
Tong, S. (2019). Air pollution and disease burden. Lancet Planetary Health, 3; 49–50
USEPA (United States Environmental Protection Agency). (1989). Risk assessment guidance for superfund. Volume 1: Human Health Evaluation Manual (Part A). Retrieved from https://www.epa.gov/risk/risk-asses sment-guidance-superfund-rags-part   
USEPA (United States Environmental Protection Agency). (2004). Air toxics risk assessment reference library volumes 1–3. Retrieved from https://www.epa.gov/fera/air-toxics-risk-assessment-reference-libraryvolumes-1-3.  
USEPA (United States Environmental Protection Agency). (2009). Risk assessment guidance for superfund volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Retrieved from https://www.epa.gov/risk/risk-assessment-guidance superfund-rags-part-f   
Vural, E. (2020). Investigation of experienced air pollution on selected pollutants scale in Kırıkkale City (2018–2019), Kastamonu University. J. Eng. Sci., 6; 41–50.
WHO. (2019). Mortality and Burden of Disease from Ambient Air Pollution. World Health Organization.  Retrieved April 17, 2019, from https://www.who.int/airpollution/ambient/en/1
Yousuf, S., Donald, A. N., & Hassan, A.B.U.M. (2022). A review on particulate matter and heavy metal emissions; impacts on the environment, detection techniques and control strategies. MOJ Eco Environ Sci., 7(1); 1-5.
Zhang, X., Eto, Y., & Aikawa, M. (2021). Risk assessment and management of PM2. 5-bound heavy metals in the urban area of Kitakyushu, Japan. Sci. Total Environ., 795; 148748.
Zhao, K., Zhang, Y., Shang, J., Schauer, J. J., Huang, W., Tian, J., Yang, S., Fang, D., & Zhang, D. (2023). Impact of Beijing’s “Coal to Electricity” program on ambient PM2.5 and the associated reactive oxygen species (ROS). J. Environ. Sci., 133; 93–106.