Antropov, P.Ya. (Eds.) (1958). Geology of the USSR. Vol. XXVII. Murmansk region. Part 1. Geological Description. (Moscow: Gosgeoltekhizdat)
Bakhur, A.E. (2018). Interpretation of natural and technogenic radioactive anomalies in environmental objects. Prospecting and Subsoil Protection, 07, 58-62.
Bakhvalov, A.V., Lavrent’eva, G.V., & Synzynys, B.I. (2012). Biogeochemical behavior of 90Sr in terrestrial and aquatic ecosystems. International Scientific and Applied Journal “Biosphere”, 2 (4), 206-216.
Chevychelov, A.P., & Sobakin, P.I. (2017). Migration of 137Cs and 90Sr in the soil-vegetative cover of the site of an underground nuclear explosion “Kraton-3”. Siberian Forestry Journal, 6, 64-75.
Eriksen, D.Ø., Sidhu, R., Ramsøy, T., Strålberg, E., Iden, K.I., Rye, H., Hylland, K., Ruus, A., & Berntssen, M.H.G. (2009). Radioactivity in produced water from Norwegian oil and gas installations – concentrations, bioavailability, and doses to marine biota, Radioprotect, 44, 869-874.
GOST 17.4.3.01-2017. Protection of Nature. Soils. General requirements for sampling. (2018). (Moscow: Standartinform)
GOST 26213-91. Soils. Methods for determining organic matter. (1992). (Moscow: Standards Publishing House)
GOST 27784-88. Soils. Method for determining the ash content of peat and peat-affected soil horizons. (1988). (Moscow: Standards Publishing House)
GOST 28268-89. Soils. Methods for determining moisture content, maximum hygroscopic moisture content, and moisture content at plant wilting. (2006). (Moscow: Standartinform)
Grechkina, V.V., Lebedev, S.V., & Petrusha, Yu.K. (2020). Features of radionuclide accumulation by terrestrial mosses in different zones of Russia. International Journal of Humanities and Natural Sciences, 11-1(50), 13-16.
Hansson, S.V., Kaste, J.M., Olid, C., & Bindler, R. (2014). Incorporation of radiometric tracers in peat and implications for estimating accumulation rates. Science of the Total Environment, 493, 170-177.
Karcher, M., Harms, I., Standring, W.J.F., Dowdall, M., & Strand, P. (2010). On the potential for climate change impacts on marine anthropogenic radioactivity in the Arctic regions. Marine Pollution Bulletin, 60, 1151-1159.
Kasimov, N.S., & Borisenko, E.N. (2002). The formation and development of the doctrine of geochemical barriers. Geochemical barriers in the zone of hypergenesis, 6-37.
Kizeev, A.N. (2015). The state of the natural environment in the area of the Kola Nuclear Power Plant (Murmansk region). International Scientific Bulletin (Bulletin of the Association of Orthodox Scholars), 2, 42-43.
Maksimovich, N.G. & Khairulina, E.A. (2011). Geochemical barriers and environmental protection. (Perm: Perm State University)
Maximovich, N.G. (2010). Theoretical and applied aspects of using geochemical barriers for environmental protection. Engineering Geochemistry, September, 20-28.
Methods for measuring the specific activity of strontium-90 (90Sr) in samples of soils, grounds, bottom sediments and rocks by the beta-radiometric method with radiochemical preparation. (2013). (Moscow: FGUP “VIMS”)
Mroz, T., Łokas, E., Kocurek, J., & Gasiorek, M. (2017). Atmospheric fallout radionuclides in peatland from Southern Poland Journal of Environmental Radioactivity, 175-176, 25-33.
Omelyuk, V.V. (2020). Radiological and hygienic characterization of global radionuclide fallout in the Arctic regions of Russia (based on data from the P.V. Ramzaev Institute of Radiation Hygiene). Radiation Hygiene, 4 (13), 51-66.
Putilina, V.S., Galitskaya, I.V., & Yaganova, T.I. Sorption processes in the contamination of groundwater with heavy metals and radioactive elements. Strontium. Analytical review. (Novosibirsk: State Public Scientific and Technical Library of the Siberian Branch of the Russian Academy of Sciences)
Rakhimova, N.N., & Deligirova, V.V. (2020, March). Study of the profile migration of radionuclides Cesium-137 and Strontium-90 in various types of soils (Paper presented at the International Scientific Conference «Global science and innovations 2020», Tashkent: Eurasian Center for Innovative Development “DARA” Publishing House)
Red Book of the Murmansk Region. (2003). (Murmansk: Murmansk Regional Publishing House)
Report “On the State and Conservation of the Environment of the Nenets Autonomous Okrug in 2020”. Retrieved October 18, 2021, from https://dprea.adm-nao.ru/ekologiya/doklady-o-sostoyanii-okruzhayushej-sredy-v-neneckom-avtonomnom-okruge/.
Report “On the state and protection of the environment of the Murmansk region in 2020”. Retrieved April 03, 2021, from https://gov-murman.ru/region/environmentstate/.
Resolution of the Chief State Sanitary Doctor of the Russian Federation dated 07.07.2009 № 47 “On the approval of SanPiN 2.6.1.2523-09” Standards of radiation safety (NRB-99/2009)”. Retrieved April 01, 2022, from https://docs.cntd.ru/document/902170553.
Sysuev, V.V. (2021). Processes of formation and parameters of the landscape-geochemical barrier of a lowland bog. Geochemistry, 7(66), 646-658.
Telelekovа, A.D., & Evseev, A.V. (2014). Radionuclides in the natural environment of the Kola Peninsula. Evolution and Dynamics of Geosystems, 5, 89-94.
Vasilyenko, I.Ya., & Vasilyenko, O.I. (2002). Radioactive Strontium. Energy: Economy, Technology, Ecology, 4, 26-32.
Vinichuk, M.M., Johanson, K.J., & Taylor, A. (2004). 137Cs in the fungal compartments of Swedish forest soils. Sci. Total Environ, 323, 243–251.
Yakovlev, E.Yu., Orlov, A.S., Ocheretenko, A.A., Druzhinin, S.V., & Druzhinina A.S. (2021). Radionuclides of atmospheric precipitation in peat-bog ecosystems of the European Subarctic of Russia (Paper presented at the Sixth International Field Symposium «West Siberian peatlands and the carbon cycle: past and present», Tomsk)