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INTRODUCTION
In recent decades, the pollution of Earth sub-surface natural water has been a major problem 

throughout the world. It is polluted either naturally or by anthropogenic activities of human 
beings. Day by day quality of groundwater is cautiously deteriorating; as a result it became unfit 
for human beings. Once the groundwater become polluted, it is very difficult, time consuming 
and expensive to clean it up. Mathematical model plays important role to study about the solute 
or pollutant transport in aquifer.

To study groundwater pollution, groundwater modelling is very helpful as it enables 
engineers or researchers to better understand complex systems, predict their behaviour, 
optimize designs and strategies, assess risks, and develop innovative solutions to address 
environmental and geotechnical challenges. In grigoundwater system, the solute dispersion 
and groundwater seepage velocity play a major role in solute transportation. Many researchers 
and scientists analyzed the relationship between these two crucial processes in the classical 
model of advection-diffusion equation (ADE). Freeze & Cherry (1979) found that dispersion 
correlates with the nth power of the seepage velocity with the exponent typically falling between 
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A mathematical model is developed to describe the conservative solute migration under sorption 
in a groundwater reservoir. For the complexity of the aquifer, it is assumed as heterogeneous and 
semi-infinite. Dispersion is considered as a varying power of seepage velocity. For the sake of 
real scenario of the aquifer, the seepage velocity, first-order decay (FOD), zero-order production 
(ZOP), and retardation factor are taken as spatio-temporal dependent parameters. Initially, the 
aquifer is assumed as polluted by a background source throughout the domain. Also, a temporally 
dependent pulse type sinusoidal input source is taken at origin of the aquifer. The other end 
of the aquifer is assumed as flux free. The retardation factor considered with a special form 
due to regional and complication of the porous medium. The transient velocity is considered as 
sinusoidal, exponential, algebraic sigmoid and asymptotic forms to study the solute transport 
behavior under different velocity patterns. The analytical solution of the proposed model 
is obtained by Laplace and inverse Laplace transform techniques. All the graphical plots are 
obtained by MATLAB software. The present study may be helpful for scientists, geologists to 
determine the time and position of harmless concentration level and can be treated as preliminary 
tool for solute migration for the future researchers.
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1 and 2. Also, according to the Indian geological formation, Ghosh & Sharma (2006) presented 
that the dispersion is linked to a power n  of the seepage velocity with the exponent varying 
between 1 and 1.2. Chen et al. (2008) derived an analytical solution (AS) taking dispersion 
as hyperbolic asymptotic space-dependent. Applying Laplace transform technique (LTT), 
Gao et al. (2010) obtained an AS for the reactive solute in mobile-immobile zone subject to 
scale dependent dispersion and first-order decay (FOD) in a heterogeneous porous medium. 
Guerrero & Skaggs (2010) derived an AS by solving a one-dimensional (1D) ADE with space 
dependence dispersion in a finite heterogeneous porous media. Applying the integral transform 
for prediction of mixing of contaminate into groundwater, dispersion coefficient has significant 
impact in hydrology. Ziskind et al. (2011) derived an AS of the classical 1D ADE in a finite 
domain subject to pulse type boundary condition. Also, Chang & Yeh (2012) derived an AS to 
investigate the non-reactive solute in non-stationary unsaturated flow fields. Using LTT, Singh 
et al. (2012) examined solute distribution by solving a 1D ADE subject to pulse type varying 
point source at origin in a medium of linear heterogeneity. Using finite difference method 
(FDM), Savovic & Djordjevich (2012) discussed the solute migration with steady and unsteady 
flow by solving a classical 1D ADE with constant and oscillating boundary condition in a semi-
infinite homogeneous and inhomogeneous media. 

Cvetkovic et al. (2014) developed a unique three-dimensional multi-indicator model to 
discuss the solute migration behaviour in a spatially dependent heterogeneous formation. Wu 
et al. (2014) explored analytical and experimental studies of solute dispersion in a non-uniform 
porous media. The distance dependent dispersion was taken as linear, parabolic, asymptotic, 
hyperbolic or exponential functions. To analyse solute migration in a heterogeneous medium, 
Abgaze & Sharma (2015) applied the hybrid finite volume method and represented with the 
breakthrough curve and found that solute dispersion increases with the variation of hydraulic 
conductivity. Singh et al. (2015) investigated the migration of solute in both parallel and 
opposing directions to sinusoidally varying flows, utilizing a point source with a pulse-type 
release. Using LTT, Kumar & Yadav (2015) obtained an analytical solution of a 1D ADE with 
uniform and pulse-type input source in a non-uniform porous media subject to space varying 
linear dispersion and seepage velocity. Applying integral transform, Suk (2016) derived a 
semi-analytical solution under the FOD and subject to temporally and spatially dependent 
dispersion with flow velocity. Moreover, Zhao et al. (2017) developed an experimental study 
of non-reactive solute transport in non-uniform aquifers. The authors explained the relationship 
between dispersivity of pollutant and hydraulic conductivity. 

Yadav et al. (2018) analytically solved a two-dimensional (2D) conservative ADE subject to 
temporal and scale-varying dispersion in a heterogeneous aquifer. Thakur et al. (2019) explored 
the transport mechanism of contaminated groundwater in a porous formation. The study derived 
the solution of a 2D ADE for semi-infinite domain with varying flow velocities. Canuto et al. 
(2019) employed the decomposition method of a time dependent ADE to analyse the conservative 
solute movement in a heterogeneous porous formation under various time steps in different sub-
domains. Applying FDM, Savovic & Djordjevich (2020) obtained solution for solute migration 
associated with constant and oscillatory type concentration conditions. Chaudhary et al. (2020) 
analysed the 1D solute distribution by taking solute dispersion as square of space dependent 
groundwater velocity in a semi-infinite aquifer. Also, Chaudhary & Singh (2020) employed the 
homotopy analysis method to develop the series solutions of a 1D multispecies convection-
dispersion equation.

 Khuzhayorov et al. (2020) discussed the solute migration under non-equilibrium sorption 
in the elements of fractured porous medium with a heterogeneous porous block. Applying LTT, 
Rajput & Singh (2021) investigated a 2D solute migration in presence of off-diagonal dispersion 
effect in a heterogeneous porous medium. The authors considered transverse, longitudinal and 
off-diagonal dispersion, all varies with space. With the help of homotopy analysis method, 
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Kumar et al. (2022) investigated 1D solute fate in the study domain by semi-analytical approach 
subject to time dependent dispersion and seepage velocity. Mehmood et al. (2023) analysed the 
fluid flow and pollutant transport in a uniform porous formation with solid plate stacks. Also, 
the pollutant transport equation is solved using FDM. Moreover, Singh et al. (2023) presented 
the 2D mathematical model under non-linear sorption and solved the governing equation using 
FDM subject to axial input sources. Liang & Isa (2024) discussed the problem of heavy metal 
contamination in Earth porous formation and its impact on environment. The mathematical 
model is presented for the transport of heavy metals through soil under the consideration of 
adsorption, desorption, emission, and retardation factors.

Numerous studies have been reported previously in which solute transport along groundwater 
flow in porous media is addressed with input source at origin for a certain period of time. 
However, the pulse type input source may occur naturally or human activities in the porous 
medium. This concept inspired our investigation into solute transport behaviour with a pulse-
type point source in an aquifer. Analytical technique is utilised to solve the ADE under the 
sorption condition. The retardation factor, FOD and zero-order production (ZOP) rates are also 
incorporated in the governing equation to study about their effects on the solute transport. 

MATHEMATICAL FORMULATION
By conservative mass law and Fick’s law of diffusion, governing solute transport model is 

formulated by considering only mechanical dispersion. The proposed governing solute transport 
equation together with the concentration conditions are modelled as follows:

c s cD uc c
t t x x

ρ λ γ
φ

∂ ∂ ∂ ∂ + = − − + ∂ ∂ ∂ ∂ 
							          (1)

1( , ) ; 0, 0c x t c x x t
u
γ

= + ≥ = 								           (2)

( )0 0

0

1 sin 0
( , ) ; 0

0

c kt t t
c x t x

t t

 + < ≤   = =
>

						         (3)

0; , 0c x t
x
∂

= →∞ >
∂

									            (4)

NOMENCLATURE

3MLc −   : Liquid phase concentration

3
1 MLc −   : Constant background solute concentration

3
0 MLc −   : Constant solute concentration at the origin

1MMs −   : Solid phase concentration 

2 1L TD −   : Longitudinal dispersion

1LTu −   : Pore-water velocity

1Tk −   : Decay parameter
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1Tλ −   : FOD rate 

3 1ML Tγ − −   : ZOP rate

3MLρ −   : Bulk density of porous formation

[ ]φ − : Porosity of the porous medium

[ ]Lx : Space variable

[ ]Tt : Time variable

The initial condition (2) interprets here that initially the domain is supposed as not solute free. 
It is linearly combined space dependent function associated with ZOP and initial concentration 

1c . The change in solute mass happens as a result of chemical gradients in groundwater, 
radioactive decay, and the effect of bacterial activities. Due to some anthropogenic activities, 
the temporally dependent sinusoidal boundary condition (3) is considered in the splitting time 
domain. The boundary condition (4) shows that contaminant mass flux is considered as no flow 
at the final boundary of the semi-infinite aquifer.

The diagrammatic representation of the solute transport with concentration condition is 
shown in Figure 1.

The linear relationship between the concentration of dissolved mass in the liquid phase ( c )  
and the concentration of sorbed ( s ) mass in the solid phase is defined as follows (Zheng & 
Bennett, 2002):

ds k c= 											           (5) 

where, 1 3M Ldk −    is distribution coefficient.

Now from Eq. (5), we get

 d
s ck
t t
∂ ∂

=
∂ ∂

											          (6)

Fig. 1. Diagrammatic representation of the model problem
 

 
 

Fig. 1. Diagrammatic representation of the model problem 
  



Pollution 2024, 10(3): 915-928919

Using Eq. (6) in Eq. (1) gives

* c cR D uc c
t x x

λ γ∂ ∂ ∂ = − − + ∂ ∂ ∂ 
,  where * 1 dR kρ

φ
= +  is the retardation factor.		  (7)

Case-I:
According to Freeze & Cherry (1979), the dispersion coefficient shows a direct proportionality 

to a some power b of pore-water velocity i.e., bD Au= , where A  is proportionality constant, 
which depends on the geometry of the porous formation and range of b  is 1 2b≤ ≤ . Based on 
this theory, the advection, dispersion, and the other parameters are generalised as follows:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1*
0 0 0

1 1
0 0

, 1 ( ); , 1 ( ); , 1 ( );

, 1 ( ); , 1 ( )

b b b

b b

u x t u ax v mt D x t D ax v mt R x t R ax v mt

x t ax v mt x t ax v mtλ λ γ γ

+ −

− −

= + = + = + 


= + = + 

		 (8)

where, 0 1a< <  is the heterogeneity factor having dimension as the inverse of distance, 
1[T ]m − is constant coefficient, 0u , 0D , 0R , 0λ , and 0γ  are their corresponding initial state 

values.
In the present work, the range of b  is considered as 0 1b≤ ≤ . Using the above generalised 

definitions of D , *R , λ , γ  and u  in Eq. (7), we get

( ) ( )( )( ) ( )
2

2
0 0 0 0 0 0 021 1 1c c cR D ax u aD b ax abu c

t x x
λ γ∂ ∂ ∂

= + − − + + − + +
∂ ∂ ∂

                            (9)

Case-II:   
Consider the retardation factor as space dependent only i.e., ( ) ( ) 1*

0, 1 bR x t R ax −= + .

Now, applying the transformation ( )
0

t
T v mt dt= ∫  

(Crank, 1975) in Eq. (7), we get

 ( )* c d cR v mt D uc c
T dx x

λ γ∂ ∂ = − − + ∂ ∂ 
                                                                                (10)

 	 To make the variable coefficient of Eq. (9) constant, the following transformation is 
introduced:

( )1 log 1 ax X
a

+ =  ,   i.e., ( )1 1aXx e
a

= −                                                                                (11)

The Eq. (9) takes the following form on using Eq. (11):
2

0 0 0 0 02

c c cR D U c
t X X

µ γ∂ ∂ ∂
= − − +

∂ ∂ ∂
,
  
where 0 0 0U u abD= −  and 0 0 0abuµ λ= +  	            (12)

The respective concentration conditions become

( )0
1

0

1( , ) 1 ;   0,  0aXc X t c e X t
u a
γ −= + − ≥ =  						      (13)
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( ) [ ]0 0

0

1 sin( ) 0
, ; 0

0
c kt t t

c X t X
t t

 + < ≤= =
>

 						      (14)

0,    ,  0c X t
X
∂

= →∞ >
∂

  									         (15)

Again, Eq. (12) is simplified by applying the transformation introduced as follows:

2
0 0

0
0 0 0

1
2 4 0

0

( , ) ( , ) e
U UX t
D R Dc X t K X t

µ γ
µ

 
− +  

 = +       
                                                            	            					                (16)

Using Eq. (16) in Eq. (12), we get

2
0

2
0

0RK K
X D t
∂ ∂

− =
∂ ∂

 								                               (17)

Also, the concentration conditions are transformed as follows:

( )
00

00 220 0 0
1

0 0 0

, ; 0, 0
UU a XX
DDK X t c e e X t

au au
γ γ γ
µ

 
− +−  
 

 
= − + − ≥ = 
 

 		              (18)

2
0

0
0 0

2
0

0
0 0

1
40

0 0
0

1
40

0
0

1 sin( ) , 0
( , ) 0

,

U t
R D

U t
R D

c kt e t t
K X t X

e t t

µ

µ

γ
µ

γ
µ

 
+  

 

 
+  

 

   + − < ≤   = =
  

− >  
  

        				    (19)

0

0

; , 0
2
UK K X t

X D
∂

= − →∞ >
∂

   								        (20) 

Applying Laplace transformation in Eq. (17), we get

00

00

2
220 0 0

12
0 0 0

( , ) e e
UU a XX
DDd K RSK X S R c R

dX au au
γ γ γ
µ

 
− +−  
 

 
− = − − + + 

 
                                      (21)

where, 0

0

RR
D

=  and S  is the transformed real parameter.

The general solution of Eq. (21) is obtained in Laplacian domain as

 

00

00 22
0 0 0

1 2 2
0 0 00 0

0 0

( , ) e e
1 1

2 2

UU a XX
DD

X RS X RS e eK X S A B c
au auU US S a

R D R D

γ γ γ
µ

 
− +−  
 

−  
= + + − + − 

    
− − +   

   

 (22)

where, the arbitrary constants A  and B  can be obtained using initial and boundary conditions.
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Applying the Laplace transformation in equations (18), (19) and (20), and using in (22), we 
get the arbitrary constants as follows:

0A =  									                                 (23)

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )
( )

( ) ( )

0 0 0 0 0 0

0

3 3 3 2
3 0 0

02 4 2

3
0 0 0 0 0

13 2 2
0 0 0 00 0

0 0

1 1 1
6 2

1 1 1
1 1 1

2 2

S t S t S t S t S t S t

S t

k t k te e e e e e
k k kt

S S SS S S

B k t e
c

S au auS U U
S S a

R D R D

θ θ θ θ θ θ

θ

θ θ θθ θ θ

γ γ γ γ
µ θ µθ

− − − − − − − − − − − −

− −

− − −
+ − − + +

− − −− − −

=
+ − − − + +

−−
− − +

 
 
 
    
     
    

           

(24)

where, 
2

0
0

0 0

1
4
U

R D
θ µ

 
= + 

 
. 

Using the values of A  and B  in Eq. (22), we get             

( )

( )
( )

( )

( )

( )

( )

( )
( )

( )
( )

( )

( )

( )

( )

0 0 0 0

0 0 0

3
02 4

0 3 3 3 2 3
0 0 0

2 3

0 0 0
1 2

0 0 0 00 0

0 0

1 1 1

6 2 1( , )

1 1

1 1
2 2

S t S t S t S t

S t S t S t

e e e ek k kt
S SS S

c
k t k t k te e e

SK X S S S

z c
S au auU US S a

R D R D

θ θ θ θ

θ θ θ

θ θθ θ

θ θ θ

γ γ γ
µ θ µ

− − − − − − − −

− − − − − −

 − − −
+ − − − −− − 

 
 + + + −= − − 

 
− − − + + −     

− − +   
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00

00

2

220 0 0
1 2 2

0 0 00 0

0 0

e
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2 2

UU a XX
DD

RS X

c e e
au auU US S a

R D R D

γ γ γ
µ

 
− +−  
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 
 
 
 
 
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 
 

 
+ − + − 

    
− − +   

       

(25)

			                                       

Now, using the inverse Laplace transform in Eq. (25), we get the required solution as 
follows:

( ) ( ){ } ( ){ } ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ){ }

( )

( ) ( )

3 00
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0
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0 0 0 0 0
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0 3
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3 3

0
0 0

,
, , , ,

, 0
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, ,

, , , ,
,

, ,
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T T
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µ µ
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where;

 ( ) ( ) ( )1
F , exp exp

2 2 2
X R X R

X T T X R erfc T T X R erfc T
T T

θ θ θ θ θ θ= − − + + +
    

    
    
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( )
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1
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T
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T X R
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RESULTS AND DISCUSSION
In the present study, the presence of input source at the origin is considered for the period 

of 0.2 years and then it will be disappeared after that. In tropical regions, like India and other 
sub-continental countries, the groundwater follows sinusoidal form of seepage velocity. On the 
other hand, mountain hill area, like as Himalayan basin, the seepage velocity is of exponential 
form. For the case 1,b =  it demonstrated that dispersion varies as the proportional to pore-water 
velocity with power 2, which is the degenerate form linear space and temporal function, whereas 
FOD, ZOP and retardation factor all are temporal dependent. On the other hand, for 0b = , it 
gives dispersion varies proportional to seepage velocity, which is only temporal dependent and 
whereas FOD, ZOP, and retardation factor all are temporal dependent and inversely proportional 
to space function.

Table 1. Four different forms of groundwater velocity are considered to analyse the result

Table 1. Four different forms of groundwater velocity are considered to analyse the result 

 

 

Sl No Velocity pattern Mathematical expression New time formation 

1. Sinusoidal form  ( ) 1 sinv mt pmt     1 - 1 cosT pmt mpt
mp

     

2. Exponentially 
decaying form  ( ) exp - , 1v mt mpt mpt    1 1-exp - , 1T mpt mpt

mp
     

3. Asymptotic form ( ) mtv mt
mt p
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

 
1 log mt pT mt p
m p
  
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4. Algebraic sigmoid 
form   2 2
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   2 21T mt p p
m
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The input data which are used for graphical presentation are as follow:

0 1c = , 1 0.1c = , 0 0.1u = , 0 0.4D = , 0 0.01γ = , 0 0.5λ = , 0.3m = , 0.15dk = , 2.49ρ = , 

0.3φ = , 0.1t = , 0.5a = , 1p = , 0.3k = .
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Figure 2 depicts the solute level decreasing with space throughout the medium that reaches 
to its harmless level around 0.7 km of the domain. In general, after solute transport, it will 
not completely disappear immediately from the aquifer. As continuous background source 
always exists throughout the domain and already existing transport solute gradually increases 
with space and attained its maximum level at a particular space, near the source end and then 
decreases continuously up to its harmless level.

In Figure 3, it is observed that concentration level is highest around 0.4 km in clay medium 
and beyond that the solute tendency is reversed. From Figures 2 and 3, the solute level 
comparatively lesser in shale medium than sandstone and clay media. This indicates that solute 
transport is more controllable in shale medium than the other two media. Also, near the source 
end of the medium, the solute level is higher for 0b =  compare to 1b = , after that this tendency 
is reversed and maximum difference occurred at the final boundary of the domain.

Figures 4 and 5 depict solute distribution for different values of a . It indicates that on 
increasing the heterogeneity parameter, the solute level increases throughout the domain. The 
influence of a  on solute transport is more relevant. This comparison is more significant for 
actual scenario of the aquifer. For both the cases of presence and absence of input source, after 

Fig. 2. Comparison of solute distribution in various 

geological formations in presence of input source 
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Fig. 2. Comparison of solute distribution in various 
geological formations in presence of input source

 

 
Fig. 3. Comparison of solute distribution in various 

geological formations in absence of input source 
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Fig. 3. Comparison of solute distribution in various 
geological formations in absence of input source

Fig. 4. Solute distribution profiles for different 

values of a  in presence of input source 

 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x (in km)

c 
(C

on
ce

nt
ra

tio
n 

in
 m

g/
L)

 

 
a=0.5
a=0.7
a=0.9
a=0.5
a=0.7
a=0.9

Solid Line   b=1
Dotted Line b=0

Fig. 4. Solute distribution profiles for different values of 
a in presence of input source

 

 
Fig. 5. Solute distribution profiles for different 

values of a  in absence of input source 
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a certain distance of 0.1 km from the origin, solute level is lower for 1b =  than 0b = . 
Figures 6 and 7 depict the solute profiles in presence and absence of input source. It is 

considered that the source exists for 0.2 year and then it will be disappeared forever. The 
patterns of solute distribution for both the cases of b  are similar but some variance occurred 
due time variation. At a specific location, the solute level is higher for higher value of t , as time 
dependent input source gives the increasing nature of pollutant. Also, the rehabilitation process 
is faster for the case of 1b =  than 0b = . Figure 7 shows that at each time period, the solute 
attains maximum level near the source end and then starts decreasing up to the harmless level. 
For both the cases (i.e., 1, 0b b= = ) as time elapse, the level gap of the concentration increase 
with space.  Also for any time, maximum peak attained for 0b = .

Figures 8 and 9 show the solute concentration profile for increasing values of ZOP. The 
concentration level taking up throughout the domain with the increasing values of ZOP when 

0b = , where as it decreases when 1b = .
Figures 10 and 11 depict solute transport profiles with four different forms of velocities. The 

concentration transport pattern under the sinusoidal and exponential forms of velocity follows 

 

Fig. 6. Solute distribution profiles at different time periods in presence of input source in clay medium 
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Fig. 7. Solute distribution profiles at different time periods in absence of input source in clay medium 
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Fig. 8. Solute distribution profiles for uniform and variable background sources in presence source 
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Fig. 9. Solute distribution profiles for uniform and variable background sources in absence source 
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Fig.10. Solute distribution profile with different form of seepage velocity in presence of input source 
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Fig. 11. Solute distribution profile with different form of seepage velocity in absence of input source 
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Fig. 12. Solute distribution profile in presence of input source 
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Fig. 13. Solute distribution profile in absence of input source 
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Fig.10. Solute distribution profile with different form 
of seepage velocity in presence of input source

Fig. 11. Solute distribution profile with different form of 
seepage velocity in absence of input source

Fig. 12. Solute distribution profile in presence of input 
source

Fig. 13. Solute distribution profile in absence of input 
source

the similar path in presence and absence of the point source. Also, the sigmoid and algebraic 
forms follow similar path together. However, the transport profiles of sinusoidal and exponential 
forms are different from the sigmoid and algebraic forms. In figure 10, the attenuation rate of 
solute distribution is very fast for sigmoid and asymptotic form of velocities than sinusoidal and 
exponential form of velocities. 

Figures 12 and 13 depict the comparison between present analytical solution and the existing 
solution (van Genuchten & Alves, 1982) of the ADE under special case in presence and absence 
of input source, respectively. For the comparison purpose, the present model problem is 
simplified by considering the initial background source and the input source at the origin both 
as constant. Also, the advection and dispersion coefficients are taken as constant. In the figures, 
it can be observed that both the graphical solutions in presence and absence of input source are 
almost similar to each other. 

CONCLUSIONS
A solute transport equation under sorption associated with FOD and ZOP is solved analytically 

in a heterogeneous porous formation subject to sinusoidally varying pulse type input source. 
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The research outcomes of the present work are observed as follows: 
1.	 The solute concentration attained higher level in clay formation compared to sandstone and 

shale formations in absence and presence of input source. 
2.	 The Solute concentration attained higher level in the medium under sinusoidal or exponential 

form of velocities as compared to sigmoid or asymptotic form of velocities.
3.	 The solute concentration level takes up in the porous formation when the heterogeneity 

parameter value is increasing, whereas it decreases in case of seepage velocity power is 
taken as zero. 

4.	 The solute concentration level increases in the medium with time in presence of input source, 
whereas it decreases in absence of input source. 

5.	 The solute concentration level increases throughout the domain on increasing the values of 
ZOP when the power of seepage velocity is taken zero, whereas it decreases when the power 
is taken one. 

6.	 The present study may be helpful for scientists or geologists to determine the harmless 
concentration level in a porous medium and can be treated as preliminary tool for solute 
migration for the future researcher. 
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