Acid-base accounting test as a tool for prediction of mine drainage acid risk at a still functional mine site: Case of Draa Sfar Mine in Marrakech (Morocco)

Document Type : Original Research Paper

Authors

1 Research Laboratory of Applied Sciences for the Environment and Sustainable Development, Higher School of Technology of Essaouira, Cadi Ayyad University, Km 9, Route of Agadir, Essaouira Aljadida BP.383, Essaouira, Morocco

2 Higher Institute of Nursing Professions and Health Technology, ISPITS - Essaouira - Morocco

10.22059/poll.2024.371478.2231

Abstract

The release of heavy metals from functional mines can result in significant environmental pollution, posing a threat to both soil and water quality. Therefore, it is crucial to characterize the chemical and physical properties of mine tailings to assess the potential risk of toxic heavy metal mobility in the environment. In this study, the chemical forms of Cd, Cu, Pb, and Zn in the tailings of Draa Sfar mine in Marrakech (Morocco) were investigated using standard sequential extraction and Atomic Absorption Spectrophotometric techniques. Results indicate that mining residues exhibit a highly acidic pH (2.9), low carbonate content (0.5%), and high electrical conductivity (7.2 mS/cm) due to significant soluble salts, particularly sulfates (3.7%). Assessing metal speciation indicated Cd's high availability in short-term mobile fractions (42%), while Cu primarily associated with soluble and exchangeable fractions (32%). Pb showed strong association with long-term mobile fractions (61%), and Zn displayed an equal distribution among mobile and lithogenic fractions. Acid-base accounting test results reveal a lower Neutralization Potential (196.4t CaCO3/kt) compared to Acid Potential (306.3t CaCO3/kt), indicating a negative Net Neutralization Potential and suggesting potential acid mine drainage. This result demonstrates that DraaSfar mining residues possess a lower acid-consuming capacity, primarily driven by their carbonate content, compared to their acid-generating capacity. This finding indicates that these mining residues have the potential to become sources of acid mine drainage, and underscore the importance of implementing sustainable mining practices and mitigation strategies to reduce environmental impact.

Keywords

Main Subjects


Abzalov, M., & Newman, C. (2017). Sampling of the mineralised tailings dumps – case study of the Mount Morgan project, central Queensland, Australia. Appli. Earth. Sci., 126:3, 124-128, DOI: 10.1080/03717453.2017.1343927. 
Aikpokpodion, P.E., Lajide, L., & Aiyesanmi, A.F. (2013). Characterization of heavy metal fractions in agrizcultural soils using sequential extraction technique. World J. Agric. Sci., 9: 45-52.
Avila, M., Perez, G., Esshaimi, M., Mandi, L., Ouazzani, N., Brianso, J.&Valiente, M. (2012). Heavy Metal Contamination and Mobility at the Mine Area of Draa Lasfar (Morocco). Open Environ. Pollut. Toxico. J., 3(1): 2-12.
Badmus, B.S., Ozebo, V.C., Idowu, O.A., Ganiyu, S.A., & Olurin, O.T. (2014). Physico-chemical Properties of Soil Samples and Dumpsite Environmental Impact on Groundwater Quality in South Western Nigeria. Afr. Rev. Phys., 9:103-114.
Banks, D., Younger, P., Arnesen, R.T., Iversen, E.R., & Banks, S.B. (1997). Mine water chemistry: the good, the bad and the ugly. Environ. Geol., 32 (3) : 157-174.
Barkouch, Y., & Pineau, A. (2016). Evaluation of the Impact of Mine Activity on Surrounding Soils of Draa Lasfar Mine in Marrakech-Morocco. Afr. J. Environ. Sci. Technol., 10 (1): 44-49. https://doi.org/10.5897/AJEST2015.1892.
Barkouch, Y., El-Fadeli, S., & Pineau, A. (2015). Contamination by trace elements of agricultural soils around Sidi Bou Othmane in abandoned mine tailings in Marrakech, Morocco. Pollut, 2(1): 93-101. DOI: 10.7508/pj.2016.01.010.
Belzile, N., Chen, Y.W., & Xu, R. (2000). Early diagenetic behaviour of selenium in freshwater sediments. Appl Geochem, 15 : 1439-1454.
Bouzahzah, H., Benzaazoua, M., Plante, B.&Bussiere, B. (2015). A quantitative approach for the estimation of the “fizz rating” parameter in the acid-base accounting tests: A new adaptations of the Sobek test. J. Geochem. Explor., 153: 53-65. https://doi.org/10.1016/j.gexplo.2015.03.003.
Caboi, R., Cidu, R., Fanfi, L., Lattanzi, P., & Zuddas P. (1999). Environmental mineralogy and geochemistry of the abandoned Pb-Zn Montevecchio-Ingurtosus mining district, Sardinia, Italy. Chron. Rech. Minière, 534: 21-28.
Dang Z., Liu C. et Haigh M., 2002. Mobility of heavy metals associated with the natural weathering of coal mine soils. Environ. Poll., 118 (3), 419-426.
El Gharmali, A. (2005). Impact des résidus miniers et des eaux résiduaires sur la contamination métallique des écosystèmes aquatiques et terrestres de la région de Marrakech, Maroc. Thèse Doct. Thèse Doct. Univ. Cadi Ayyad, Fac. Sci. Semlalia, Marrakech, Maroc, 152p.
Elhaya, N., Ait Melloul, A., Flata, k., El-Fadeli, S., Pineau, A., & Barkouch, Y. (2023). Impact of Mining Activity on Soils and Plants in the Vicinity of a Zn-Pb Mine (Draa Lasfar, Marrakech - Morocco), Pollut,  9(2):615-627.  10.22059/Poll.2022.348075.1606.
Emmanuel, K.S., Luhua, J., Kewei, L., Jiejie, Y., Ziwen, G., Jiaxin, S., Yan, D., Hongwei, L., Huidan, J., Yili, L., Huaqun, Y., & Xueduan, L. (2022). A review on the bioleaching of toxic metal (loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front. Microbiol., 13:1-21. https://doi.org/10.3389/fmicb.2022.1049277.
Ettler, V. (2016). Soil contamination near non-ferrous metal smelters: a review. Appl. Geochem., 64: 56–74. doi: 10.1016/j.apgeochem.2015.09.020.
Fuentes, A., Lloren, M., Saez, J., Soler, A., Aguilar, M.I., Ortuno, J.F., & Meseguer, V.F. (2004). Simple and sequential extractions of heavy metals from different sewage sludge. Chemosphere, 54:1039–1047. https://doi.org/10.1016/j.chemosphere.2003.10.029.
Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Anal. Chem., 21 (6) 451-467. https://doi.org/10.1016/S0165-9936(02)00603-9.
Gray, N.F. (1998). Acid mine drainage composition and the implications for its impact on lotic systems. Water Res., 32: 2122-2134.
Hageman, L., Seal, R., Diehl, F., Piatak, N., & Lowers, H. (2015). Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Appl. Geochemi., 57: 125-139. https://doi.org/10.1016/j.apgeochem.2014.12.007.
Hosseinpour, M., Morteza, O., & Azimi Y. (2022). Evaluation of positive and negative impacts of mining on sustainable development by a semi-quantitative method. J. Clean. Prod.,366: 132955. https://doi.org/10.1016/j.jclepro.2022.132955.
Huaman, K., Olivera, Y.,Rojas, V.,Arauzo, L.,Ibañez, C., &Dominguez, F. (2023). Minimally Active Neutralization of Acid Mine Drainage through the Monte Carlo Method. Water, 15(19), 3496; https://doi.org/10.3390/w15193496.
Ilhwan, P., Carlito, B., Sanghee, J., Xinlong, L., Kensuke, S., Mayumi, I., & Naoki, H. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere, 219: 588-606. https://doi.org/10.1016/j.chemosphere.2018.11.053.
Iribar, V., Izco, F., Antigüedad, I., & Da Silva A. (2000). Water contamination and remedial measures at the Troya abandoned Pb-Zn mine (the Basque Country, Northern Spain). Environ. Geol., 39 (7): 800-806.
Karbassi, A., Nasrabadi, T., Rezai, M., & Modabberi, S. (2014). Pollution with metals (As, Sb, Hg, Zn) in agricultural soil located close to Zarshuran gold mine, Iran. Environ. Eng. Manag. J. , 13(1):  115-120.
Madrid, L., & Diaz-Barrientos, E. (1992). Influence of carbonate on the reaction of heavy metals in soils. J. Soil Sci., 43: 709-721.
Mafra, C., Bouzahzah, H., Lachezar, S., & Gaydardzhiev, S. (2022). An integrated management strategy for acid mine drainage control of sulfidic tailings. Min. Eng., Volume 185: 107709. https://doi.org/10.1016/j.mineng.2022.107709.
Marcoux, E., Belkabir, A., Gibson, H., Lentz, D.& Ruffet, G. (2008). Draa Sfar, Morocco: a Visean, 331 Ma, pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sedimentdominant terrane. Ore Geology Reviews 33: 307–328.
Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree,  J., Tekere, J., &Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng., 183: 106740. https://doi.org/10.1016/j.ecoleng.2022.106740.
Miller, S. D., & Miller, J.A. (2015). Acid-base accounting as a tool for prediction of post-closure water quality at mine sites. Appl. Geochem., 57, 158-170.
Moo, J., Byoung, Y., Giehyeon, L., Yun, H., Jung-Seok, Y.,Edward, J., & Man, J. (2015). Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone. J. Geochem. Explor., 159: 234–242. http://dx.doi.org/10.1016/j.gexplo.2015.09.015.
Moreno-González, R., Macías, F., Olías, M., & Cánovas, C.R. (2022). Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian Pyrite Belt, Spain). Environ. Pollut., 295:  118697. https://doi.org/10.1016/j.envpol.2021.118697.
Muniruzzaman, M., Teemu, K., Ahmadi, N., & Rolle, M. (2020). Multiphase and multicomponent simulation of acid mine drainage in unsaturated mine waste: Modeling approach, benchmarks and application examples. Appl. Geochem., 120: 104677. https://doi.org/10.1016/j.apgeochem.2020.104677.
Nabi Bidhendi, G.R., Karbassi, A.R., Nasrabadi, T., & Hoveidi, H. (2007). Influence of copper mine on surface water quality. Int. J. Environ. Sci. Tech., 4 (1): 85-91.
Nasrabadi, T., Nabi Bidhendi, G.R., Karbassi, A.R., Hoveidi, H., & Nasrabadi, I. (2009). Influence of Sungun copper mine on groundwater quality, NW Iran. Environ Geol, 58:693–700.
Nguyen, V., Phung, T., Pham, D., & Ho, L. (2023). Mechanical properties and durability of concrete containing coal mine waste rock, F-class fly ash, and nano-silica for sustainable development. J.Eng. Res., 100097. https://doi.org/10.1016/j.jer.2023.100097.
Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., & Blowes, D.W. (2000). Negative waters from iron mountain, California. Environ. Sci. Technol., 34 : 254-258.
Nuttall, C., & Younger, P. (2000). Zinc removal from hard, circum-neutral mine waters using a novel closed-bed limestone reactor. Water Res., 34(4): 1262-1268, https://doi.org/10.1016/S0043-1354(99)00252-3.
Nwaila, G., Ghorbani, Y., Zhang, S., Leon, C., Derek, H., Nwaila, C., Bourdeau, J., &Hartwig, E. (2021). Valorisation of mine waste - Part II: Resource evaluation for consolidated and mineralised mine waste using the Central African Copperbelt as an example. J. Environ. Manage., 299:  113553.
Plaza, F., Wen, Y., Perone, H., Xu, Y., &Liang, X. (2017).  Acid Rock Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long-term Impacts. Sci. Total. Environ., 576: 572-585. https://doi.org/10.1016/j.scitotenv.2016.10.076.
Ruiz-Sánchez, A.,Julio,  C., & Lapidus, G.T. (2023). Evaluation of acid mine drainage (AMD) from tailings and their valorization by copper recovery. Miner. Eng., 191 : 107979. https://doi.org/10.1016/j.mineng.2022.107979.
Schlesinger, M., Sole, K., Davenport, W., & Gerardo, R.F. (2022). Chapter 3 - Production of high copper concentrates-comminution and flotation. Extractive Metallurgy of Copper (Sixth Edition), 31-66. https://doi.org/10.1016/B978-0-12-821875-4.00011-0.  
Sheoran, A., Sheoran, V., &Choudhary, R. (2010). Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Miner. Eng, 23(14): 1073-1100. https://doi.org/10.1016/j.mineng.2010.07.001.
Skousen, J. (2017). A methodology for geologic testing for land disturbance: Acid-Base Accounting for surface mines. Geoderma, 308: 302-311. https://doi.org/10.1016/j.geoderma.2017.07.038.
Skousen, J., Simmons, J., Mc Donald, L., &Ziemkiewicz, P. (2022). Acid-base accounting to predict post-mining drainage quality on surface mines. J. Environ. Qual., 31(6):2034-44.  doi: 10.2134/jeq2002.2034.
Sobek, A.A., Skousen, J.G., Scott, S.E., &Fisher, J. (2000). Chemical and physical properties of overburdens and minesoils. p. 77–104. In Reclamation of drastically disturbed lands. Agronomy.Monogr. 41. ASA, Madison, WI. https://doi.org/10.2134/agronmonogr41.c4.
Stromberg, B., & Banwart, S. (1999). Weathering of waste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments. J. Contam. Hydrol., 39 : 59-89.
Thuong, T.N.,Satoshi, S., & Horiuchi, A. (2023). Removal of Heavy Metals from Acid Mine Drainage with Lab-Scale Constructed Wetlands Filled with Oyster Shells. Water, 14(20), 3325.  https://doi.org/10.3390/w14203325.
Williams, T.M., & Smith, B. (2000). Hydrochemical characterization of acute acid mine drainage at Iron Duke mine, Mazowe, Zimbabwe. Environ. Geol., 39, 272-278.
Wufem, M.B., Ibrahim, A.Q., Maina, M.H., Nangbes, J., & Gungsat, J.B. (2013). Speciation of Some Heavy Metals in Soils around a Cement Factory in Gombe State, Nigeria. Inter. J. Eng. Sci., 2(9):110-115.
Xilong, Z., Jenn-Tai, L., Corbin, D.A., Jiajia, C., Ying-Ying, L. (2018). Enhanced adsorption of anionic surfactants on negatively charged quartz sand grains treated with cationic polyelectrolyte complex nanoparticles. Colloids Surf. A: Physicochem. Eng. Asp., 553: 397-405. https://doi.org/10.1016/j.colsurfa.2018.05.079.
Yapi, Y.H.A., Gouli, B.I.M., Kouyaté, A., Diby, B., Dongui, B.K., & Trokourey A. (2021). Study of the Mobility of Some Metallic Trace Elements (MTEs) of Certain Lowlands of the City of Daloa (Côte d’Ivoire). Am. J. Appl. Chem., 9(4): 102-108. http://www.sciencepublishinggroup.com/j/ajac.
Zhang, R., Hedrich, S., Römer, F., Goldmann, D., &Schippers, A. (2020). Bioleaching of cobalt from cu/co-rich sulfidic mine tailings from the polymetallicRammelsberg mine, Germany. Hydrometallurgy.,  197:105443. doi: 10.1016/j.hydromet.2020.105443.
Zhuoyi, Y., Wenchuan, D., Gengxin, X., Ming, Y., Ya, H., & Xin, X. (2023). soil pH and electrical conductivity values and cadmium phytoavailability for Chinese cabbage under simulated conditions. Ecotoxicol Environ Saf, 266: 115566. https://doi.org/10.1016/j.ecoenv.2023.115566.