Alkabbani, H., Ramadan, A., Zhu, Q., & Elkamel, A. (2022). An Improved Air Quality Index Machine Learning-Based Forecasting with Multivariate Data Imputation Approach. Atmosphere, 13(7). https://doi.org/10.3390/atmos13071144
Belachsen, I., & Broday, D. M. (2022). Imputation of Missing PM2.5 Observations in a Network of Air Quality Monitoring Stations by a New kNN Method. Atmosphere, 13(11). https://doi.org/10.3390/atmos13111934
Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M., & Ren, H. (2021). Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environmental Research, 197. https://doi.org/10.1016/j.envres.2021.111123
Chen, Z., Liu, P., Xia, X., Wang, L., & Li, X. (2022). The underlying mechanism of PM2.5-induced ischemic stroke. In Environmental Pollution (Vol. 310). https://doi.org/10.1016/j.envpol.2022.119827
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Gated Recurrent Neural Networks on Sequence Modeling. ArXiv.
Colorado, M. (2019). Perú es el país con la peor calidad de aire y Santiago la capital más contaminada de Latinoamérica. France 24, 1–3. https://www.france24.com/es/20190313-medio-ambiente-calidad-aire-contaminacion
Flores, A., Tito-Chura, H., Centty-Villafuerte, D., & Ecos-Espino, A. (2023). Pm2.5 Time Series Imputation with Deep Learning and Interpolation. Computers, 12(8). https://doi.org/10.3390/computers12080165
Flores, A., Tito, H., & Silva, C. (2019). Local average of nearest neighbors: Univariate time series imputation. International Journal of Advanced Computer Science and Applications, 10(8). https://doi.org/10.14569/ijacsa.2019.0100807
Huang, F., Pan, B., Wu, J., Chen, E., & Chen, L. (2017). Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget, 8(26). https://doi.org/10.18632/oncotarget.17313
Lee, Y. S., Choi, E., Park, M., Jo, H., Park, M., Nam, E., Kim, D. G., Yi, S. M., & Kim, J. Y. (2023). Feature extraction and prediction of fine particulate matter (PM2.5) chemical constituents using four machine learning models. Expert Systems with Applications, 221. https://doi.org/10.1016/j.eswa.2023.119696
Moritz, S. (2021). imputeTS. In The R Journal (Vol. 9, Issue 1).
Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time series missing value imputation in R. R Journal, 9(1). https://doi.org/10.32614/rj-2017-009
Oh, J., Choi, S., Han, C., Lee, D. W., Ha, E., Kim, S., Bae, H. J., Pyun, W. B., Hong, Y. C., & Lim, Y. H. (2023). Association of long-term exposure to PM2.5 and survival following ischemic heart disease. Environmental Research, 216. https://doi.org/10.1016/j.envres.2022.114440
Peker, N., & Kubat, C. (2021). A hybrid modified deep learning data imputation method for numeric data sets. International Journal of Intelligent Systems and Applications in Engineering, 9(1). https://doi.org/10.18201/ijisae.2021167931
Priya, S. A., & Khanaa, V. (2023). An Intelligent Air Quality During COVID-19 Prediction and Monitoring System Using Temporal CNN-LSTM. In EAI/Springer Innovations in Communication and Computing: Vol. Part F274. https://doi.org/10.1007/978-3-031-23683-9_31
Reátegui-Romero, W., Sánchez-Ccoyllo, O. R., Andrade, M. de F., & Moya-Alvarez, A. (2018). PM2.5 Estimation with the WRF/Chem Model, Produced by Vehicular Flow in the Lima Metropolitan Area. Open Journal of Air Pollution, 07(03). https://doi.org/10.4236/ojap.2018.73011
Reátegui-Romero, W., Zaldivar-Alvarez, W. F., Pacsi-Valdivia, S., Sánchez-Ccoyllo, O. R., Garciá-Rivero, A. E., & Moya-Alvarez, A. (2021). Behavior of the Average Concentrations As Well As Their PM10 and PM2.5 Variability in the Metropolitan Area of Lima, Peru: Case Study February and July 2016. International Journal of Environmental Science and Development, 12(7). https://doi.org/10.18178/ijesd.2021.12.7.1341
Republica, G. La. (2023). Perú es el país con peor calidad de aire de Sudamérica. https://especial.larepublica.pe/la-republica-sostenible/2023/09/14/peru-es-el-pais-con-peor-calidad-de-aire-de-sudamerica-1225756
Rojas, F. J., Pacsi-Valdivia, S., & Sánchez-Ccoyllo, O. R. (2022). Simulación computacional e influencia de las variables meteorológicas en las concentraciones de PM10 y PM2.5 en Lima Metropolitana. Información Tecnológica, 33(3). https://doi.org/10.4067/s0718-07642022000300223
RumboMinero. (2022). El 79% de su consumo de energía provino de fuentes de combustibles fósiles en 2021. https://www.rumbominero.com/usa-internacionales/consumo-energia-combustibles-fosiles-2021/
Saif-ul-Allah, M. W., Qyyum, M. A., Ul-Haq, N., Salman, C. A., & Ahmed, F. (2022). Gated Recurrent Unit Coupled with Projection to Model Plane Imputation for the PM2.5 Prediction for Guangzhou City, China. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.816616
Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network architectures for large scale acoustic modeling. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. https://doi.org/10.21437/interspeech.2014-80
Tapia, V. L., Vasquez, B. V., Vu, B., Liu, Y., Steenland, K., & Gonzales, G. F. (2020). Association between maternal exposure to particulate matter (PM2.5) and adverse pregnancy outcomes in Lima, Peru. Journal of Exposure Science and Environmental Epidemiology, 30(4). https://doi.org/10.1038/s41370-020-0223-5
Tapia, V., Steenland, K., Sarnat, S. E., Vu, B., Liu, Y., Sánchez-Ccoyllo, O., Vasquez, V., & Gonzales, G. F. (2020). Time-series analysis of ambient PM2.5 and cardiorespiratory emergency room visits in Lima, Peru during 2010–2016. Journal of Exposure Science and Environmental Epidemiology, 30(4). https://doi.org/10.1038/s41370-019-0189-3
Tapia, Vilma, Steenland, K., Vu, B., Liu, Y., Vásquez, V., & Gonzales, G. F. (2020). PM2.5exposure on daily cardio-respiratory mortality in Lima, Peru, from 2010 to 2016. Environmental Health: A Global Access Science Source, 19(1). https://doi.org/10.1186/s12940-020-00618-6
Vasquez-Apestegui, B. V., Parras-Garrido, E., Tapia, V., Paz-Aparicio, V. M., Rojas, J. P., Sanchez-Ccoyllo, O. R., & Gonzales, G. F. (2021). Association between air pollution in Lima and the high incidence of COVID-19: findings from a post hoc analysis. BMC Public Health, 21(1). https://doi.org/10.1186/s12889-021-11232-7
Vu, B. N., Tapia, V., Ebelt, S., Gonzales, G. F., Liu, Y., & Steenland, K. (2021). The association between asthma emergency department visits and satellite-derived PM2.5 in Lima, Peru. Environmental Research, 199. https://doi.org/10.1016/j.envres.2021.111226
Wyer, K. E., Kelleghan, D. B., Blanes-Vidal, V., Schauberger, G., & Curran, T. P. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. In Journal of Environmental Management (Vol. 323). https://doi.org/10.1016/j.jenvman.2022.116285
Yuan, H., Xu, G., Yao, Z., Jia, J., & Zhang, Y. (2018). Imputation of missing data in time series for air pollutants using long short-term memory recurrent neural networks. UbiComp/ISWC 2018 - Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers. https://doi.org/10.1145/3267305.3274648