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ABSTRACT: Land leveling is one of the most important steps in soil preparation and 
cultivation. Although land leveling with machines requires considerable amount of 
energy, it delivers a suitable surface slope with minimal soil deterioration as well as 
damage to plants and other organisms in the soil. Notwithstanding, in recent years 
researchers have tried to reduce fossil fuel consumption and its deleterious side effects, 
using new techniques such as Artificial Neural Networks (ANNs) and Adaptive Neuron-
Fuzzy Inference System (Fuzzy shell-clustering algorithm) models that will lead to a 
noticeable improvement in the environment. The present research investigates the effects 
of various soil properties such as Embankment Volume, Soil Compressibility Factor, 
Specific Gravity, Moisture Content, Slope, Sand Percent, and Soil Swelling Index in 
energy consumption. The study consists of 90 samples, collected from three different 
regions. The grid size has been set on 20 m * 20 m from a farmland in Karaj Province, 
Iran. The aim is to determine the best linear model, using ANNs and ANFIS model to 
predict environmental indicators and find the best model for land leveling in terms of its 
output (i.e. Labor Energy, Fuel energy, Total Machinery Cost, and Total Machinery 
Energy). Results show that ANFIS can successfully predict labor energy, fuel energy, 
total machinery cost, and total machinery energy. All ANFIS-based models have R

2
 

values above 0.995 and MSE values below 0.002 with higher accuracy in prediction, 
given their higher R

2
 value and lower RMSE value. 

Keywords: ANFIS, artificial neural network, energy, environmental research, land 
levelling.  

INTRODUCTION


During the last century due to increasing 

human population, demands for agricultural 

commodities have risen enormously. In 

addition, currently one of the cardinal 

environmental challenges in the world is 

production and consumption of energy. 

 Corresponding Author E-mail: mdelavar@ut.ac.ir

Despite using modern types of energy such 

as solar energy, inappropriate use and lack 

of proper management have led to an 

intensive rise in energy consumption in this 

field. It should be taken into account that 

environmental conservation and market 

globalization will depend on food security 

in future agriculture (Jat et al., 2006). 

Accordingly, some special policies ought to 
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be addressed so that an energy viewpoint 

can be considered in conjunction with 

environmental issues to solve the problem. 

Land leveling is one of the heavy and costly 

operations among agricultural practices that 

consumes considerable amount of energy. 

What is more, moving heavy machines on 

the ground makes the soil denser, 

particularly in wet regions where the 

moisture contents of the soil is higher, 

leading to a situation, not easily recoverable 

(Khan et al., 2007).  

On the other hand, land leveling 

simplifies irrigation and improves field 

situations in other practices, related to 

agriculture, regulating the soil surface and 

normalizing its slope (Brye et al., 2006). 

Reportedly, there are three significant 

factors, having effect on grain yield, 

including the effects of land leveling, 

methods of water application, and the 

interaction between the two. Okasha et al. 

(2013) observed a noteworthy connection 

between slope and diverse irrigation scheme 

in different seasons. Diverse methods of 

land leveling can affect the physical and 

chemical properties of the soil, hence they 

can make differences in plant establishment, 

root growth, aerial cover, and eventually 

crop yield.  

As a direct result, one of the most 

important steps in soil preparation and a key 

factor in food production, to be optimized, is 

land leveling (Cassel et al., 1982). Besides, 

decreasing consumption of fossil fuel for 

land leveling diminishes air contaminants 

and improves the environmental condition. 

There is growing understanding about the 

importance and impacts of water and soil 

management which in turn reveals the 

significance of optimized laser land levelling 

from social, financial, and agronomic points 

of view (McFarlane et al., 2006).  

An artificial neural network paradigm, 

known as the temporal back propagation 

neural network (TBP-NN), is successfully 

demonstrated as a monthly rainfall –runoff 

model (Sajikumar & Thandaveswara, 

1999). An ANN with sufficient complexity 

is capable of approximating any smooth 

function to any desired degree of accuracy. 

In addition, ANNs are computationally 

robust, capable of learning and generalizing 

from examples to give meaningful solutions 

to problems even when the input data are 

either erroneous or incomplete (Luk et al., 

2000). ANN is a conceptual technique, the 

output or inferred variable of which can be 

modeled in terms of other parameters, 

relevant to the same process (Rallo et al., 

2002). It has been widely used in the field 

of engineering for optimization and 

prediction. Ahmadi et al. (2014) proposed 

ANNs, trained with Particle Swarm 

Optimization (PSO) and Back-Propagation 

(BP) algorithm to estimate the equilibrium 

water dew point of a natural gas stream with 

a TEG solution at different TEG 

concentrations and temperatures. They 

reported that this approach, namely PSO-

ANN, can help better understand fluid 

reservoirs‟ behavior through simulation 

scenarios, giving statistical results that were 

quite considerable.  

In another research a feed-forward ANN, 

optimized by PSO, was used as an artificial 

intelligence modeling tool to predict 

asphalting precipitation due natural depletion 

(Ahmadi & Golshadi, 2012). They also 

proposed another network, based on feed-

forward ANN and optimized by (HGAPSO), 

comparing it with conventional BP-ANNs. 

They reported that results of this approach 

were better than conventional methods, 

based on statistical analysis (Ahmadi et al., 

2013). These techniques have been also used 

to predict parameters with declining 

uncertainty. In a research, Ahmadi et al. 

(2015) used artificial intelligence techniques 

to accurately determine the amount of 

Dissolved Calcium Carbonate Concentration 

in oil field brines with minimum uncertainty. 

In another research Gautam and Holz (2001) 

explored the effectiveness and applicability 

of adaptive neuron-fuzzy-system-based on 

rainfall-runoff models for simulation and 



Pollution, 3(4): 595-612, Autumn 2017 

597 

forecasting. Therefore, they proposed an 

adaptive neuron-fuzzy system with 

autoregressive exogenous input (ARX) 

structure, presenting an application for 

modeling rainfall-runoff processes in the 

Sieve basin, Italy.  

In another study, Multi-Layer Perceptron 

(MLP)-ANN models and adaptive network-

based fuzzy inference system (ANFIS) 

models were adopted in order to predict and 

simulate the groundwater level of Lammed 

plain. The results were obtained by 

emphasizing higher accuracy and lower 

scattering for modeling ANFIS, where 

RMSE and R2 turned out to be 0.9987 and 

0.0163 in training stage, and 0.9753 and 

0.0694 in test stage, respectively 

(Fereydooni & Mansoori, 2015). ANN and 

ANFIS were also used to predict the 

subsurface water level in paddy fields of 

Plain Areas between Trajan and Nectarous 

Rivers. The correlation coefficient of the 

proposed models were 0.8416 and 0.8593, 

with their RMSE being 0.2667 and 0.249, 

respectively (Mohammadi et al., 2009; Lei 

et al., 2006). 

Imperialist competitive algorithm 

simulates an optimization problem by 

analogizing variables to colony and imperial 

countries. This method has been widely 

used in solving engineering problems 

(Abdechiri et al., 2011) such as data 

clustering (Ebrahimzadeh et al., 2012), 

Nash balance point attainment (Rajabioun et 

al., 2008), ANNs training (Zhang, 2012) 

composite constructions (Abdi et al., 2011), 

production administration complications 

(Nazari-Shirkouhi et al., 2010), and 

optimization complications (Ahmadi and 

Golshadi, 2012). Environmental Impact 

Assessment (EIA) has been also addressed 

in the literature, involving the investigation 

and estimation of scheduled events with an 

eye on ensuring environmentally-sound and 

sustainable improvements (Toro et al., 

2010).  

In another study, Akbarzadeh et al. 

(2009) developed an ANFIS model to 

estimate soil erosion, while a further 

research (Krueger et al., 2011) evaluated 

characterization of root distribution patterns 

under field conditions with ANFIS model. 

Zhu and Fujitha (1994) compared a feed-

forward ANN model to predict a 3-hour 

lead-runoff, employing a fuzzy reasoning in 

rainfall–runoff modelling performance. 

They took into account the phenomenon's 

dependence on time by using a window of 

rainfall inputs. Recently, neural networks 

based researches have implemented 

semantic-based fuzzy neural architecture, 

instead of black box approach (Ang & 

Quek, 2005). Since, land levelling with 

machines requires considerable energy, it is 

expected to optimize energy consumption in 

the levelling operation. As a result, this 

paper tests two approaches, namely 

Integrating Artificial Neural Networks 

(ANNs) and Adaptive Neuro-Fuzzy 

Inference System (Fuzzy shell clustering 

algorithm) models and evaluates them in 

terms of their prediction of environmental 

indicators for land leveling. Moreover, since 

there has been a limited number of studies, 

associated with energy consumption in land 

leveling, the objective of the current energy 

and cost research is to find a function for all 

indices of land leveling, including the slope, 

coefficient of swelling, soil density, soil 

moisture, special weight dirt, and the 

swelling. 

MATERIALS AND METHODS 

The region of the case study  
In order to verify the accuracy and 

applicability of the proposed linear model, 

a case study was carried out based on the 

project's requirements in a farmland in 

Karaj, Iran. The farm area was 70 hectare 

big and was located west of Karaj, 31° 28' 

42'' north latitude and 48° 53' 29'' east 

longitude. Topographic maps of the farm 

were plotted at scale of 1:500. The length, 

width, and height of the points, from a 

reference point (coordinates of x, y, and z), 

were considered the outputs. The grid size 
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in the case study region was 20*20 m, 

during the topographical operations. 

Samples were collected from two different 

sites inside the region at two different 

depths: surface soil (0−10 cm) and 

subsurface soil (10−30 cm). In total 90 

samples (30 from each location and 15 

from each depth) were collected from 3 

lands. In the next step, every five samples 

were mixed to create one sample. In this 

way, the total 90 samples were converted 

into 18 composite soil samples for 

convenient laboratory analysis. In the 

laboratory, collected moist soil samples 

were firstly sieved through 10mm mesh 

sieve to remove gravel, small stones, 

coarse roots, and plant remnants, then to be 

passed through 2 mm sieve. Afterwards, 

the sieved samples were dried at room 

temperature and their moisture content, 

texture, bulk density, land slope, and soil 

optimum density were determined. 

Intelligent techniques 
This research applied ANN and ANFIS 

(Fuzzy shell clustering algorithm) 

techniques as two methods of 

Computational Intelligence (CI) to predict 

the energy consumption of land leveling at 

various field conditions (two levels of 

moisture contents, three levels of inflation 

pressure, three tillage depths) and finally 

their performances were evaluated and 

compared, and the optimal models, 

identified. The ANN model with back-

propagation algorithm was developed, 

using MATLAB software (Mathworks, 

Inc). The developed ANN in the present 

study was characterized by three layers: an 

input layer, a hidden layer, and an output 

layer. The obtained data was divided into 

three randomly-selected subsets: the 

training set, the testing set, and the 

validation set. Some papers use 70% of the 

dataset for training purposes with the 

remaining 30% for model validation and 

testing. Training set (input vectors and the 

corresponding target vectors) were used to 

train the network to find a function, 

associating input vectors with the specific 

output vector. Within the development of 

the ANFIS prediction models, the available 

data were divided, similar to ANN 

modeling, into two randomly-selected 

subsets: training and testing datasets with 

the former used to develop and calibrate 

the model, while the latter (also known as 

the validation dataset), not used in the 

development of the model, was utilized to 

validate the trained model. The ANFIS and 

ANN were applied to perform prediction 

models with seven inputs and four single 

outputs. The input parameters were soil 

cut/fill volume, soil compressibility factor, 

specific gravity, moisture content, slope, 

percentage of sand, and soil swelling 

index. The output of each model included 

labor energy, fuel energy, total machinery 

cost, and total machinery energy. Prior to 

utilization of the dataset for modeling, the 

inputs and target output were normalized 

or scaled linearly between -1 and 1, in 

order to increase the performance and 

speed of ANN and ANFIS models (Luk et 

al., 2000): 

2 1r rmin
n

rmax rmin

x x
x

x x


 


 

(1) 

where    is the normalized input variable; 

  , the raw input variable; and       and 

     , the minimum and maximum rates 

of the input variable, respectively. 

Development of ANN model 
ANNs are massively parallel-distributed 

information processors that have certain 

performance characteristics, resembling 

biological neural networks of human brain 

(Movagharnejad & Nikzad, 2007). They 

have been developed as a generalization of 

mathematical models of human biological 

neural system (Mohammadi et al., 2009). 

There are a lot of structure types of ANN 

models. This study used a typical feed 

forward back propagation (BP) MLP 

structure. The main advantage of MLP 

structures over other types is that they have 
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the ability to learn complex relations 

between input and output patterns, which 

would be difficult to model with 

conventional algorithmic methods (Azadeh 

et al., 2008). An ANN structure usually 

consists of an input layer, followed by one 

or more hidden layers as well as an output 

layer. The input nodes are the previous 

lagged observations, while the output 

provides the forecast for future values. 

Hidden nodes with appropriate nonlinear 

transfer functions were used to process the 

information, received by the input nodes. 

The model can be written as follows 

(Azadeh et al., 2008): 

0 0

1 1
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(2) 

where m is the number of input nodes; n, 

the number of hidden nodes; αj, the vector 

of the weights from hidden to output 

nodes; and βij, the weights from the input 

to hidden nodes The weights of the arcs, 

leading from the bias terms, are 

represented by α0 and β0j, whose values are 

always equal to 1, while f is a sigmoid 

transfer function (Shakibai and 

Koochekzadeh, 2009).  

Multiple layers of neurons with 

nonlinear transfer functions allow the 

network to learn nonlinear and linear 

relations between the input and output 

parameters (Tiryaki, 2008). The linear 

output layer lets the network to take any 

values even outside the range of −1 to +1, 

while if the last layer of a multilayer 

network has sigmoid neurons, the network 

outputs will be only in a limited range 

(Tiryaki, 2008). Input variables included 

specific gravity, density, moisture content, 

slope, inflation rate, and type of the cut 

soil. Relevantly, output variables were fuel 

energy, machinery energy, labor power, 

total cost, and energy consumption. In this 

study, all available datasets were used for 

regression modeling; however, for 

development of ANN model, the data were 

randomly divided into two groups of 

training (consisted of 80% of all data) and 

testing (the remaining 20%) datasets 

(Diamantopoulou, 2005). Several 

architectures of MLP type became the 

subject of investigation in order to find the 

one that could result in the best overall 

performance.  

The learning rules of Momentum and 

Levenberg Mar quart were taken into 

consideration and also no transfer function 

was used for the first layer. For the hidden 

layers, the sigmoid and hyperbolic tangent 

transfer functions were applied, while for 

the last one a linear transfer function was 

set. Also, a number of different network 

sizes and learning parameters were tried. 

The ANN system, applied for the predictor 

models, had seven inputs and four outputs. 

These inputs included soil cut/fill volume, 

soil compressibility factor, specific gravity, 

moisture content, slope, percentage of sand, 

and soil swelling index, whereas the outputs 

of each model were labor energy, fuel 

energy, total machinery cost, and total 

machinery energy. Fig.1 shows the 

schematic architecture of the used ANN. As 

aforementioned, the main elements of 

ANNs are constituted by artificial neurons. 

The input model consisted of dendritic 

nodes, similar to a biological cell that could 

be represented as a vector with n items X= 

(X1, X2,… , Xn); the summation of inputs 

multiplied by their corresponding weights 

could be represented by scalar quantity S. 

1

n

n n

n

S W X


  (3) 

where W=(W1 ,W2 ,… ,WN) is the weight 

vector of associations among neurons. The 

S quantity is then passed to a non-linear 

activation function f, yielding the 

following output:  

 y f s
 

(4) 

Non-linear transfer function is usually 

represented as sigmoid functions and is 

defined as: 

 
1

1 s
f s

e



 (5) 
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The output of y can be produced as a 

result of the model or that of the next layer 

(in multilayer networks). In the design of 

an ANN, certain elements should be taken 

into account, such as the type of input 

parameters. 

This research has used the three-layer 

perceptron network, which is composed of 

an input layer, one hidden layer of 

computational modes, and an output layer. 

In each layer, a number of neurons were 

considered that were connected to the 

neighboring neurons via some associations. 

In these networks, the effective input of 

each neuron was obtained from the 

multiplication of the outputs of the 

previous neurons by the weights of those 

neurons. The neurons in the first layer 

received the input information and 

transferred it to hidden neurons through 

related connections. The input signal in 

such networks can only be expanded in a 

forward direction. The main advantage of 

such a network is its simplicity of model 

implementation as well as input/output data 

estimation. Yet, some of its major 

shortcomings are the low training rate and 

need for a huge set of data. 

 

Fig. 1. A schematic representation of a three-layer ANN 

Adaptive Neuron-Fuzzy Inference 
System (ANFIS) 
ANFIS is a suitable and well-known 

technique for modeling complex systems that 

face uncertainty (Buragohain & Mahanta, 

2008). It uses a learning algorithm, derived 

from or inspired by neural network theory, to 

determine fuzzy sets and fuzzy rules by 

processing data samples (Lin & Lee, 1996). 

Fuzzy sets provide a framework to 

incorporate human knowledge in problems' 

solution, being the basis of adaptive 

network-based fuzzy inference system 

(ANFIS). In fuzzy logic theory, the sets are 

associated with set membership. Compared 

to traditional binary sets or “crisp sets” 

where membership is either „1‟, typically 

indicating true, or „0‟, indicating false, fuzzy 

logic variables range between 0 and 1. Thus, 

fuzzy logic deals with approximate reasoning 

rather than fixed and exact one (Gonzalez & 

Woods, 2008). By using hybrid learning 
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methodology, it gives the mapping relation 

between the input and output data, specifying 

the best distribution of membership functions 

(Ying & Pan 2008). By combining ANN and 

fuzzy logic, ANFIS has many advantages of 

fuzziness (Avci, 2008). Combination of these 

two techniques makes ANFIS modeling 

more systematic and less dependent on 

expert knowledge (Sengur, 2008a; Ubeyli, 

2008). In order to arrange this inference 

system, five layers are used, each containing 

several nodes, with the outputs from one 

layer used as the inputs of the next. To easily 

specify ANFIS function, a system with two 

inputs (x, y) and one output (fi) is assumed. 

ANFIS is based on fuzzy if-then rules 

(Buragohain & Mahanta, 2008). In a 

Surgeon  type fuzzy inference system (FIS) 

the two rules may be as follows (Sengur, 

2008a; Ying & Pan, 2008; Ubeyli, 2008): 

Rule 1. IF x is A1 and y is B1, then z is 

f1(x,y), and 

Rule 2. IF y is A2 and y is B2, then z is 

f2(x,y), 

In these rules, the inputs to ANFIS 

model are specified by x and y and the 

fuzzy sets are specified by A and B, in 

which case fi(x,y) represents the outputs of 

FIS. The structure of ANFIS and the node 

function in each layer is described in 

details, below. Adaptive nodes denote the 

parameter sets, adjustable in these nodes, 

while, fixed nodes show the parameter sets 

that are fixed in the system (Buragohain & 

Mahanta, 2008).  

Layer 1. Each node i in this layer 

produces a membership grade of a 

linguistic label. Assuming that node i input 

is presented by x; the linguistic label 

(small, large, etc.), associated with node I 

is represented by Ai; and the parameter set 

that changes the shapes of the membership 

function is denoted by {ai; bi; ci} (or {ai; 

ci} in the latter case). The node function of 

the i
th

 node is presented as follows: 

 
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(6) 

Layer 2. By means of multiplication, the 

„firing strength‟ of each rule is computed 

by each node in this layer as follows:  

    2,1,1  iyBxxAwO iiii 

 

(7) 

Layer 3. The i
th

 node of this layer 

computes the i
th

 rule‟s firing strength to the 

sum of all rules‟ firing strengths ratio and it 

is presented as follows: 




 

i

i

i

i

i

ii
w

wf

wfoutputoverallO5

 

(8) 

Back-propagation gradient descent is 

the basic learning rule of ANFIS. Error 

signals are defined as the derivative of the 

squared error, compared to each node‟s 

output. Back-propagation gradient descent 

rule computes error signals from the output 

layer backward to the input layer, and is 

similar to the back-propagation learning 

rule, applied in the common feed-forward 

neural-networks (Rumelhart et al., 1986). 

The present study has used a hybrid-

learning rule, combining the least-squares 

and gradient descent methods to find a 

feasible set of antecedent and consequent 

parameters (Jang, 1991). There are two 

passes in the hybrid learning methodology 

for ANFIS. In the backward pass, the error 

rates propagate backward from output layer 

to input one, and the premise parameters 

are updated by the gradient descent 

approach. In the forward pass the 

functional signals go forward until layer 4 

and the consequent parameters are 

identified by the least squares estimate. 

Assuming fixed values for the premise 

parameters, the overall output can be 

presented as a linear combination of the 

consequent parameters as follows (Ying & 

Pan, 2008): 
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(9) 

In hybrid learning algorithm the gradient 

approach is combined by the least squares 

approach (Ying & Pan 2008). In the forward 

pass, consequent parameters are recognized 

by the least squares estimate (Sengur, 2008a; 

Ubeyli, 2008). In this study, the inputs have 

been considered to be moisture, density, soil 

compressibility factor, Soil Swelling Index 

(SSI), land slope, percentage of sand, and 

embankment volume. On the other hand, the 

outputs have been considered to involve 

environmental indicators associated with 

land levelling, i.e. fuel energy, labor energy, 

machinery energy, and cost of total energy. 

RESULTS 

Results of ANFIS model prediction 
In order to predict the energy, consumed for 

land leveling, fuzzy shell clustering 

algorithm was applied. This section presents 

the results of ANFIS models for prediction 

of Labor Energy (LE), Fuel Energy (FE), 

Total Machinery Cost (TMC), and Total 

Machinery Energy (TME). A code was 

written in MATLAB programming language 

for ANFIS simulations. Different ANFIS 

structures were tried, using the programming 

code and the appropriate representations 

were determined. Each structure for the 

corresponding combination was evaluated, 

using 100 independent runs, and the 

statistical criteria (R
2
 and MSE) of the output 

models were calculated for responses of 

interest.  

Tables 1 and 2 present the minimum, 

average, and maximum values of R
2
 and 

MSE for various combination of developed 

ANFIS-based models, illustrating the 

calculated values of R
2
 and MSE for 

different developed models of labor energy 

against the number of clusters, with other 

outputs showing similar behavior.  

As presented in Table 1, statistical 

criteria for prediction of labor energy 

reveals that FIS model was superior to 

ANN back propagation model. Average R
2
 

value in FIS model for prediction of labor 

energy was found to be 0.9948 and 0.9944 

in Mamdani and Sugeno models, 

respectively, whereas in back propagation 

model they turned out to be 0.9921 and 

0.9921, respectively. Moreover, as 

presented in Table 1, statistical criteria for 

prediction of fuel energy reveal that FIS 

model was superior to ANN back 

propagation model .Average R
2
 value in 

FIS model for prediction of fuel energy 

was 0.9927 and 0.9922 in Mamdani and 

Sugeno models ,respectively, while, in 

back propagation model R
2 

value was 

0.9891 and 0.9892, respectively.  

As presented in Table 2, statistical 

criteria for prediction of total machinery 

cost reveals that FIS model was superior to 

ANN back propagation model .Average R
2 

value in FIS model for prediction of total 

machinery cost was 0.9921 and 0.9922 in 

Mamdani and Sugeno models, 

respectively. In back propagation model, 

however, R
2 

gave the values of 0.9894 and 

0.9895, respectively. As presented in Table 

2, statistical criteria for prediction of total 

machinery energy reveals that FIS model 

was superior to back propagation model, 

for average R
2 

value in FIS model for this 

criterion turned out to be 0.9950 and 

0.9952 in Mamdani and Sugeno models ,

respectively, while in back propagation 

model it was calculated as 0.9925 and 

0.9926, respectively.  

Table 6 compares statistical criteria of 

sensitivity analysis and neural network 

models and ANFIS models. As it can be 

seen from Table 6, the ANFIS model 

performed, providing better results than the 

ANN models ,based on its higher R
2 

and 

lower RMSE values. 
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Table 1. Calculated statistical criteria for prediction of labor energy/fuel energy with different 

combinations of optimization methods and FIS types 

Optimization method Fis type 
MSE R

2
 

Min. Ave. Max. Min. Ave. Max. 

L
ab

o
r 

E
. 

Hybrid 
Mamdani 0.00063 0.00130 0.00329 0.9856 0.9948 0.9971 

Sugeno 0.00058 0.00126 0.00326 0.9865 0.9944 0.9974 

Backpropagation 
Mamdani 0.00083 0.00102 0.00412 0.9831 0.9921 0.9965 

Sugeno 0.00088 0.00154 0.00407 0.9831 0.9921 0.9964 

F
u

el
 E

. Hybrid 
Mamdani 0.00119 0.00181 0.00371 0.9851 0.9927 0.9952 

Sugeno 0.00111 0.00173 0.00390 0.9843 0.9922 0.9955 

Backpropagation 
Mamdani 0.00119 0.00270 0.00560 0.9775 0.9891 0.9952 

Sugeno 0.00123 0.00268 0.00560 0.9775 0.9892 0.9950 

 

Table 2. Calculated statistical criteria for prediction of total machinery cost /energy, using different 

combinations of optimization methods and FIS types 

Optimization method Fis type 
MSE R

2
 

Min. Ave. Max. Min. Ave. Max. 

C
o

st
 Hybrid 

Mamdani 0.00122 0.00188 0.00387 0.9837 0.9921 0.9949 

Sugeno 0.00119 0.00185 0.00394 0.9834 0.9922 0.9950 

Backpropagation 
Mamdani 0.00140 0.00251 0.00465 0.9805 0.9894 0.9941 

Sugeno 0.00141 0.00250 0.00465 0.9805 0.9895 0.9940 

E
n

er
g

y
 

Hybrid 
Mamdani 0.00059 0.00121 0.00353 0.9856 0.9950 0.9975 

Sugeno 0.00058 0.00120 0.00356 0.9855 0.9952 0.9976 

Backpropagation 
Mamdani 0.00077 0.00183 0.00395 0.9839 0.9925 0.9968 

Sugeno 0.00080 0.00182 0.00395 0.9839 0.9926 0.9967 

 

 

Fig. 2. Statistical performance criteria of LE 

Determining the impact of number of 

clusters on all developed models is feasible 

(Fig. 2). Moreover, different optimization 

methods and FIS types can be easily 

compared. For the ANFIS-based model, in 

both training methods, the MSE (R
2
) value 

decreases (increases) and also the 

prediction performance of developed 

ANFIS-based models improve gradually 

with the number of clusters. In addition, 
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comparison of the results indicates that the 

hybrid method has a higher value of R
2
 and 

a lower value of MSE, thus its performance 

is more accurate. Also, the performance of 

the sugeno FIS type is better than the 

Mandeni. It is noteworthy that the models 

with low MSE values, have more R
2
 

values, and vice versa. Figure 3 a-d shows 

the results from the comparison of the 

predicted values of ANFIS models with the 

actual data. These predicted values are 

compared with actual data to show the 

performance of the ANFIS models for the 

prediction of each response. Results from 

these figures reveal that FIS model was 

superior to ANN model in predicting 

labour energy, fuel energy, total machinery 

energy, and total machinery cost. 
a) b) 

  

c) d) 

  

Fig. 3. Scatter plot for the predicted model and actual values of a) labor energy, b) fuel energy, c) total 

machinery cost, and d) total machinery energy. 
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Artificial neural network model 
This section gives the results of regression 

models and training various networks with 

different structures. The ANN models were 

developed by training the networks with 

various combinations of Network Training 

Functions (NTF), number of hidden layers, 

and number of neurons in the each hidden 

layer. To select the best network topology, in 

total 20678 different ANN models were 

evaluated and the RMSE and coefficient of 

determination (R
2
) values were calculated. 

For a full comparison between the 

performances of the trained structures, 

Tables 3 and 4 show the results, obtained 

from ANN of feed forward BP type with 

seven different network training algorithms. 

These methods of training are available in 

the Neural Network Toolbox software and 

use gradient- or Jacobian-based methods, 

such as Levenberg-Marquet (trainlm), 

(Levenberg, 1944; Marquardt, 1963).  

It has been proven that Bayesian 

regularization has appropriate generalization 

properties, when used in the training of the 

NN (Mahersia & Hamrouni, 2015). Scaled 

conjugate gradient (trainscg) is one of the 

most popular second-order gradient 

supervised procedure (Møller, 1993), along 

with conjugate gradient function (traincgf), 

which is a network  training  function that 

updates related values of weight and bias, 

based on conjugate gradient  back 

propagation with Fletcher-Reeves updates 

(Pandey et al., 2012). Resilient back-

propagation (trainrp), in which the ordinary 

gradient descent back-propagation 

modification, is applied in order to omit the 

harmful effects of the magnitudes, related to 

the partial derivatives (Shiblee et al., 2010). 

Gradient descent with momentum and 

adaptive learning rate back propagation 

(traingdx) is a network training function to 

update bias and weight values, according to 

gradient descent momentum and adaptive 

learning rate (Pandey et al., 2012). Gradient 

descent with adaptive learning rate back 

propagation (traingda) is a batch gradient 

descent that runs with variable learning rate 

(Hagan et al., 1996), and finally gradient 

descent with momentum back propagation 

(traingdm) is a network training function, 

used to update weight and bias values, 

according to gradient descent with 

momentum (Pandey et al., 2012).  

These networks use 10 input data in the 

input layer to predict the outputs, utilizing a 

linear function in their output layer to 

transfer the data to the output. Tables 3 and 

4 demonstrate the model outputs, which are 

the result of 500 thousand runs of the 

model. The selected NTFs for LE in land 

leveling, as shown in the first row of Table 

3, was the best, as it had the highest 

correlation coefficient and lowest RMSE. 

These functions had eight neurons in the 

first layer, and three neurons in the second. 

Details of the best trained networks for 

prediction of LE are shown in Table 2. The 

NTF of trainlm had higher RMSE and lower 

R2 for two (8-3) and three (2-7-6) hidden 

layers, but NTF of trainbr for one hidden 

layer had the best statistical interpretation. 

The NTF of trainlm, including two neurons 

in one hidden layer, is the simplest ANN for 

forecasting the LE with RMSE, below 

0.021 as well as R2 above 0.996. 

Table 3 gives the details of the selected 

networks for prediction of FE. The NTF of 

trainlm had higher RMSE and lower R
2
 for 

two (4-2) and three (8-2-5) hidden layers; 

however, NTF of trainscg for one hidden 

layer had the best statistical output. The 

NTF of trainlm, including two neurons in 

one hidden layer, was the simplest ANN 

for predicting the FE with RMSE below 

0.033 and R
2
 above 0.995. As it is shown 

in Table 4, the first model, consisting of 

three hidden layers (5-8-10 topology), had 

the highest coefficient of determination 

(0.9966) and the lowest values of RMSE 

(0.0287), indicating that this model could 

predict the TMC accurately. So this model 

was given as the best solution to estimate 

TMC. Table 4 demonstrates the details of 

the selected networks for prediction of 
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TME. The NTF of trainlm had higher 

RMSE and lower R
2
 for two (6-4) and 

three (4-5-3) hidden layers, though NTF of 

trainscg for one hidden layer had the best 

statistical results. The NTF of traingdx, 

including two neurons in one hidden layer, 

was the simplest ANN for forecasting the 

FE. The RMSE for this model was found to 

be 0.225 which was very low. 

ANN Models, shown in Figure 4, show 

the actual responses versus the predicted 

ones. As the predicted values come closer 

to the actual values, the points on the 

scatterplot come closer to the diagonal line, 

which is the regression result. Closeness of 

the points to the line is an evidence of 

satisfactory performance of the models in 

prediction of the targets. For a perfect fit, 

the data should fall along a 45 degree line, 

where the network outputs are equal to the 

targets. The training record was used to 

plot the training, validation, and test 

performance of the training progress (error 

against the number of training epochs) 

Table 3. Selected ANN for prediction of Labor Energy (LE), Fuel energy (FE) 

Selected ANN for prediction of Labor Energy (LE) Selected ANN for prediction of Fuel energy (FE) 

NTF 
Network 

topology 
RMSE R

2
 NTF 

Network 

topology 
RMSE R

2
 

trainlm 8-3 0.0159 0.9990 trainlm 8-2-5 0.0206 0.9983 

trainlm 4-9 0.0159 0.9990 trainlm 10-4-10 0.0224 0.9980 

trainlm 2-7-6 0.0164 0.9989 trainlm 4-2 0.0238 0.9977 

trainlm 7-10 0.0164 0.9989 trainlm 9-2-3 0.0241 0.9977 

trainlm 5-3 0.0165 0.9989 trainlm 5-2-9 0.0248 0.9976 

trainlm 9-5-6 0.0166 0.9989 trainlm 3-2 0.0253 0.9974 

trainlm 6-2-3 0.0167 0.9989 trainlm 2-2-2 0.0269 0.9971 

trainlm 7-2-3 0.0171 0.9988 trainlm 2-2 0.0271 0.9971 

trainbr 3-2 0.0174 0.9988 trainbr 2-6 0.0279 0.9969 

trainbr 10-7 0.0179 0.9987 trainlm 6-2-2 0.0310 0.9962 

trainbr 4 0.0171 0.9988 trainbr 5 0.0249 0.9975 

trainlm 2 0.0209 0.9982 trainlm 6 0.0255 0.9980 

traincg 6 0.0217 0.9981 trainscg 11 0.0261 0.9973 

trainrp 7 0.0254 0.9974 traingdx 3 0.0329 0.9957 

traingdx 2 0.0298 0.9964     
 

Table 4. Selected ANN for prediction of Total Machinery Cost (TMC), Total Machinery Energy (TME) 

Selected ANN for prediction of Total Machinery 

Cost (TMC) 

Selected ANN for prediction of Total Machinery 

Energy (TME) 

NTF 
Network 

topology 
RMSE R

2
 NTF 

Network 

topology 
RMSE R

2
 

trainlm 5-8-10 0.0287 0.9966 trainlm 6-4 0.0157 0.9990 

trainlm 7-9-2 0.0298 0.9963 trainlm 4-5-3 0.0158 0.9990 

trainlm 4-5-7 0.0304 0.9961 trainlm 6-2-4 0.0160 0.9990 

trainlm 7-8 0.0329 0.9957 trainlm 2-7 0.0163 0.9989 

trainlm 7-2-2 0.0332 0.9954 trainlm 3-2 0.0164 0.9989 

trainlm 3-2-3 0.0332 0.9954 trainbr 5-6 0.0167 0.9989 

trainlm 2-4-10 0.0343 0.9951 trainlm 3-2-8 0.0168 0.9989 

trainlm 2-2-5 0.0345 0.9951 trainlm 9-2-10 0.0171 0.9989 

trainbr 3-9 0.0345 0.9950 trainlm 2-4-2 0.0192 0.9985 

trainbr 5-8 0.0349 0.9950 trainlm 2-2-2 0.0199 0.9984 

trainscg 7 0.0321 0.9958 trainscg 8 0.0164 0.9989 

trainlm 2 0.0325 0.9948 trainlm 3 0.0176 0.9987 

trainbr 5 0.0328 0.9955 traingdx 2 0.0300 0.9964 

trainrp 4 0.0368 0.9944     

traingdx 2 0.0433 0.9922     
 

. 
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Fig. 4. Scatter plots of output vs. target, using ANN models for prediction of LE 

  

Fig. 5. Scatter plots of output vs. target, using ANN models for prediction of FE 
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Fig. 6. Scatter plots of output vs. target, using ANN models for prediction of TMC 

 

Fig. 7. Scatter plots of output vs. target, using ANN models for prediction of TME 
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Table 5. Comparison of ANFIS and ANN models 

Responce 
ANFIS ANN 

RMSE R
2
 RMSE R

2
 

LE 0.00058 0.9974 0.0159 0.9990 

FE 0.00111 0.9955 0.0206 0.9983 

TMC 0.00119 0.9950 0.0287 0.9966 

TME 0.00058 0.9976 0.0157 0.9990 

 

Table 5 compares the statistical criteria 

of neural network models and ANFIS 

models. As it can be seen in this table, 

ANFIS models perform and provide better 

results than the ANN models, thanks to 

their higher R
2
 and lower RMSE values. 

When evaluating the predictive capabilities 

of ANNs and ANFIS in terms of estimating 

soil shear strength from measured particle 

size distribution (clay and fine sand), 

Calcium Carbonate Equivalent (CCE), 

results showed that the ANN model was 

more feasible in predicting the soil shear 

strength than the ANFIS model. The root 

mean square error (RMSE), mean 

estimation error (MEE), and correlation 

coefficient (R) between the measured soil 

shear strength and the estimated values, 

using the ANN model, were 0.05, 0.01, and 

0.86, respectively (Besalatpour et al., 2012). 

Khoshnevisan et al. (2014) used several 

ANFIS models to predict wheat grain yield 

on the basis of energy inputs. Moreover, 

ANNs were developed and the obtained 

results were compared with ANFIS 

models. The results illustrated that ANFIS 

model can predict the yield more precisely 

than ANN. 

In another study, MLP-ANN models 

and ANFIS models were adopted in order 

to predict and simulate the groundwater 

level of Lamerd plain. The required results 

were obtained by emphasizing higher 

accuracy and lower scattering for 

modelling ANFIS, with RMSE value of 

0.9987 and R
2
 value of 0.0163 in the 

training stage, and RMSE of 0.9753 and R
2
 

of 0.0694 in testing stage (Fereydooni & 

Mansoori, 2015). 

In another research, Artificial Neural 

Network (ANN) and Neuro-Fuzzy inference 

system (ANFIS) were used to predict the 

subsurface water level in paddy fields of 

Plain Areas between Trajan and Nectarous 

Rivers. The correlation coefficient of these 

two respective models were 0.8416 and 

0.8593, and their RMSE was 0.2667 and 

0.2491 (Mohammadi et al., 2009). 

Kisi and Shiri (2013) compared ANN 

and ANFIS models for prediction of long-

term monthly air temperature, using 

geographical inputs. They illustrated that 

the maximum and minimum R
2
 values 

were 0.995 and 0.921 for ANN model, 

computed to the values of 0.999 and 0.876 

for ANFIS model. 

CONCLUSION 
There have been a limited number of 

researches, related to energy consumption in 

land leveling, which presented the function 

of the volume of excavation and 

embankment. In the present research, 

however, energy and cost of land leveling 

were function of all land properties, 

including the slope, coefficient of swelling, 

soil density, soil moisture, and special 

weight dirt. The paper's argument was built 

on an appropriate theoretical foundation, 

concepts, and other ideas, and the methods 

were employed appropriately. This study 

investigated the ability of Artificial Neural 

Networks (ANNs) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) models 

for prediction of environmental indicators, 

namely LE, FE, TMC, and TME, during 

land leveling. Results were extracted and 

the statistical analysis was performed, 

enabling the determination of RMSE and 

coefficient of determination, R
2,
 of the 

models, as a criterion to compare the 

selected models. According to the results, 
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10-8-3-1, 10-8-2-5-1, 10-5-8-10-1, and 10-

6-4-1 MLP network structures were chosen 

as the best arrangements and were trained 

using Levenberg-Marquet as NTF. Results 

showed that adaptive neuro-fuzzy inference 

system could be successfully used for 

prediction of labor energy, fuel energy, total 

machinery cost, and total machinery energy. 

The ANFIS models with hybrid 

optimization method and Sugeno FIS type 

showed better performance than the 

backpropagation and Mamdani ones. All 

ANFIS-based models had R
2
 values above 

0.995 and MSE values below 0.002. 

Moreover, ANFIS was shown to be capable 

of predicting output variables (i.e. LE, FE, 

TMC, and TME). The result of this research 

was used for surface irrigation on 

agricultural lands and can be employed in 

economic projects on agricultural lands. 

They can be further used as a set of tools for 

the managers, consultants, researchers, etc. 

The present study's results may have an 

impact on agricultural society, affecting 

their life quality. These implications are 

consistent with the findings and conclusions 

of the paper. 

REFERENCES 
Abdechiri, M., Faez, K. and Bahrami, H. (2011). 

Adaptive imperialist competitive algorithm (AICA), 

cognitive informatics (ICCI). 9th IEEE 

International Conference, 940: 945. 

Abdi, B., Mozafari, H., Ayob, A. and Kohandel, R. 

(2011). Imperialist competitive algorithm and Its 

application in optimization of laminated composite 

structures. Eur. J. Sci. R., 55(2): 174-187.  

Ahmadi, M.A. and Golshadi, M. (2012). Neural 

network based swarm concept for prediction 

asphaltene precipitation due to natural depletion, 

Journal of Petroleum Science and Engineering, 98: 

40-49. 

Ahmadi, M.A., Ahmadi, M.R. and Shadizadeh, S.R. 

(2013). Evolving artificial neural network and 

imperialist competitive algorithm for prediction  

permeability of the reservoir. Appl. Soft. Comput., 

23(13): 1085-1098.  

Ahmadi, M.A., Bahadori, A. and Shadizadeh, S.R. 

(2015). A rigorous model to predict the amount of 

dissolved calcium carbonate concentration 

throughout oil field brines: Side effect of pressure 

and temperature. Fuel., 139: 154-159. 

Ahmadi, M.A., Soleimani, R. and Bahadori, A.A. 

(2014). Computational intelligence scheme for 

prediction equilibrium water dew point of natural gas 

in TEG dehydration systems. Fuel.: 137, 145-154. 

Akbarzadeh, A., Mehrjardi, R., Rouhipour, H., 

Gorji, M. and Rahimi, H. (2009). Estimating of soil 

erosion covered with rolled erosion control systems 

using rainfall simulator (neuro-fuzzy and artificial 

neural network approaches). J. Appl. Sc. Res., 5: 

505-14. 

Ang, K.K. and Quek, C. (2005). RSPOP: rough set-

based pseudo outer-product fuzzy rule. 

Avci, E. (2008). Comparison of wavelet families for 

texture classification by using wavelet packet 

entropy adaptive network based fuzzy inference 

system. Appl. Soft. Comput., 8(1): 225-231. 

Azadeh, A., Ghaderi, S.F. and Sohrabkhani, S. 

(2008). Annual electricity consumption forecasting 

by neural network in high energy consuming 

industrial sectors. Energ. Convers. Managet., 49: 

2272-2278. 

Besalatpour, A., Hajabbasi, M.A., Ayoubi, S., 

Afyuni, M., Jalalian, A. and Schulin, R. (2012). Soil 

shear strength prediction using intelligent systems: 

artificial neural networks and an adaptive neuro-

fuzzy inference system. Soil. Sci. Plant. Nutr., 58: 

149-160. 

Brye, K.R., Slaton, N.A. and Norman, R.J. (2006). 

Soil physical and biological properties as affected 

by land leveling in a clayey aquert. Soil. ScI. Soc. 

Am. J., 70: 631-642. 

Buragohain, M. and Mahanta, C. (2008). A novel 

approach for ANFIS modeling based on full 

factorial design. Appl. Soft. Comput., 8: 609-625.  

Cassel, D., Wood, M. and Bunge, R.P. (1982). Classer 

lmitogenicity of brain axolemma membranes and 

soluble factors for dorsal roil ganglion schwann cells. 

J. Cell.Biochem., 18: 433-445. 

Diamantopoulou, M.J. (2005). Artificial neural 

networks as an alternative tool in pine bark volume 

estimation. Comput. Electron. Agr., 48: 235-244. 

Ebrahimzadeh, A., Addeh, J. and Rahmani, Z. 

(2012). Control chart pattern recognition using k-

mica clustering and neural networks. Isa. T., 51: 

111-119. 

Fereydooni, M. and Mansoori, B. (2015). 

Simulation depth of bridge paler scouring using 

articial neural network and  adaptive neuro-fuzzy  

inference system. Indian. J. Fund. Appl. life Sci., 5: 

2091-2095.



Pollution, 3(4): 595-612, Autumn 2017 

611 

Gautam, D.K. and Holz, K.P. (2001). Rainfall-

runoff modeling  using adaptive neuro-fuzzy 

systems. J. Hydrol., 3(1): 3-10. 

Gonzalez, R.C. and  Woods, R.E. (2008). Digital 

image processing third edition. Upper Saddle River, 

New Jersey: Pearson Education, Inc. 

Hagan, M.T., Demuth, H.B. and Beale, M.H. 

(1996). Neural network design, pws pub. co., 

Boston, 3632. identification algorithm. Neural. 

Comput., 17: 205-243. 

Jang, J.R.S. (1991). Fuzzy modeling using 

generalized neural networks and kaman filter 

algorithm. Proc. Ninth. Natl .Conf. Artif .Intell., 

(AAA-91): 762-767. 

Jat, M.L., Gupta, R.K. and Rodomiro, R.S. (2006). 

Diversifying the intensive cereal cropping systems 

of the indo- ganges through horticulture. Curr. 

Hortic., 46: 27-31. 

Khan, F., Khan, S.U., Sarir, M.S. and Khattak, R.A. 

(2007). Effect of land leveling on some physico-

chemical propertles of soil in district dir lower. 

Sarhad, J. Agr., 23: 108-114. 

Khoshnevisan, B., Rafiee, S., Omid, M. and 

Mousazadeh, H. (2014). Development of an 

intelligent system based on ANFIS for predicting 

wheat grain yield on the basis of energy inputs. 

Inform. Process. Agr., 1: 1-9; 14-22. 

Kisi, O. and Shiri, J. (2013). Prediction of long-term 

monthly air temperature using geographical inputs. 

Int. J. Climato. dx.doi.org/10.1002/joc.3676. 

Krueger, E., Prior, S.A., Kurtener, D., Rogers, H.H. 

and  Runion, G.B. (2011). Characterizing root 

distribution with adaptive neuro-fuzzyanalysis. Int. 

Agrophys., 25: 93-96. 

Lei, K., Qiu, Y. and He, Y. (2006). A new adaptive 

well-chosen inertia weight strategy to automatically 

harmonize global and local search ability in particle 

swarm optimization. In Systems and Control in 

Aerospace and Astronautics, 2006. ISSCAA 2006. 

1st International Symposium on, January, IEEE. 

Levenberg, K. (1944). A method for the solution of 

certain non-linear problems in least squares. Q. J. 

Appl. Math., 2: 164-168. 

Lin, C.T. and Lee, C.S.G. (1996). Prentice-Hall 

Inc., upper Saddle River, NJ, USA. 

Luk, K.C., Ball, J.E. and Sharma, A. (2000). A 

study of optimal model lag and spatial inputs to 

artificial neural network for rainfall forecasting. J. 

Hydrol., 227: 56-65. 

Mahersia, H. and Hamrouni, K. (2015). Using 

multiple steerable filters and bayesian regularization  

for facial expression recognition. Eng. Appl. Artif. 

Intel., 38: 190-202. 

Marquardt, D.W. (1963). An algorithm for least-

squares estimation of nonlinear parameters. J soc 

Ind Appl Math., 11(2): 431-41. 

McFarlane, B.L., Stumpf-Allen, R.C.G. and 

Watson, D.O. (2006). Public perceptions of natural 

disturbance in Canada‟s national parks: the case of 

the mountain pine beetle (dendroctonus ponderosa 

hopkins). Biolo. Con., 130: 340-8. 

Mohammadi, A., Rafiee, S., Keyhani, A. and 

Emam-Djomeh, Z. (2009). Modelling of kiwifruit 

(cv.Hayward) slices drying using artificial neural 

network. 4th International Conference on Energy 

Efficiency and Agricultural Engineering, Rousse, 

Bulgaria., 1-3, 397-404. 

Møller, M. F. (1993). A scaled conjugate gradient 

algorithm for fast supervised learning. Lect. Notes. 

Comput. Sc., 6(4): 525-533. 

Movagharnejad, K. and Nikzad, M. (2007). 

Modeling of tomato drying using artificial neural 

network. Comput. Electron. Agr., 59: 78-85. 

Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., 

Rezaie, K. and Atashpaz-Gargari, E. (2010). 

Solving the integrated product mix-outsourcing 

problem using the imperialist competitive 

algorithm. Expert. Syst. Appl., 37: 7615-7626. 

Okasha, D.E.M., Abdelraouf, R.E. and Abdou, 

M.A.A. (2013). Effect of land leveling and water 

applied methods on yield and irrigation water use 

efficiency of maize (zea mays L.) grown under clay 

soil conditions. World. Appl. Sci. J., 27(2): 183-190. 

Pandey, S., Hindoliya, D.A. and Mod, R. (2012). 

Artificial neural networks for predicting indoor 

temperature using roof passive cooling techniques 

in buildings in different climatic conditions. Appl. 

Soft. Comput., 12(3): 1214-1226. 

Rajabioun, R., Atashpaz-Gargari, E. and Lucas, C. 

(2008). Colonial competitive algorithm as a tool for 

nash equilibrium point achievement. Lect. Notes .

Comput. Sc., 8: 680-695. 

Rallo, R., Ferre-Gin, J., Arenas, A. and Giralt, F. 

(2002). Neural virtual sensor for the inferential 

prediction of product quality from process 

variables. Comput. Chem. Eng., 26: 1735-1754.  

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. 

(1986). Learning internal representations by back-

propagating errors. Near. Surf. Geophys., 323: 533-

536. 

Sajikumar, N. and Thandaveswara, B.S. (1999). A 

non-linear  rainfall– runoff model using an artificial 

neural network. J. Hydrol., 216: 32-55. 



Alzoubi, I. et al. 

 
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)" 

612 

Sengur, A. (2008a). Wavelet transform and adaptive 

neuro-fuzzy inference system for color texture 

classification. Expert. Sits. Apple., 34: 2120-2128. 

Shakibai, A.R. and Koochekzadeh, S. (2009). 

Modeling and predicting agricultural energy 

consumption in Iran. American-Eurasian J. Agr. 

Environ. Sci., 5: 308-312. 

Shiblee, M., Chandra, B. and Kalra, P.K. (2010). 

Learning of geometric mean neuron model using 

resilient propagation algorithm. Expert. Syst. Appl., 

37(12): 7449-7455. 

Tiryaki, B. (2008). Predicting intact rock strength 

for mechanical excavation using multivariate 

statistics, artificial neural networks, and regression 

trees. Eng. Geol., 99: 51-60. 

Toro, J., Requena, I. and Zambrano, M. (2010). 

Environmental impact assessment in Colombia: 

critical analysis and proposals for improvement. 

Environ. Impact. Asses., 30: 247-261. 

Ubeyli, E.D. (2008). Adaptive neuro - fuzzy 

inference system employing wavelet coefficients for 

detection of ophthalmic arterial disorders. Expert. 

Sys. Appl., 34(3): 2201-2209. 

Ying, L. and Pan, M. (2008). Using adaptive 

network based fuzzy inference system to forecast 

regional electricity loads. Energ. Convers. Manage., 

49(2): 205-211. 

Zhang, X. (2012). The application of imperialist 

competitive algorithm based on chaos theory in 

perceptron neural network. Phys. Procedia., 25: 

536-542.  

Zhu, M.L. and Fujitha, M. (1994). Comparison 

between fuzzy reasoning and neural networks 

methods to forecast runoff discharge. J. Hyrosci. 

Hydr. Engrg., 12(2): 131-141. 

 

 

 


