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ABSTRACT 

The present study deals with groundwater pollution in multilayer aquifer. The model is based on 

decomposition of finite layers in semi-infinite groundwater reservoir. A constant pollutant source is 

injected at the input boundary of the uppermost layer (UML) of the landfill. At the intermediate inlet 

boundary, some average value for the longitudinal exchange of the input source concentration in each 

sub-layer is considered from the previous layer. Initially, the aquifer is not solute free in each sub layer 

that means some constant background contaminant concentration exists. In each sub layer, 

concentration gradient is assumed to be zero at the extreme boundary.  The linear sorption and first 

orders decay terms are considered to model the groundwater pollution in multilayer aquifer. The 

Laplace transform technique is adopted to solve one-dimensional (1D) advection-dispersion equation 

(ADE). This approach is helpful to understand the solute migration in finite sub layers. The results are 

elucidated for the different time periods to examine the peak of pollutant concentration level in 

geological formations.  
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INTRODUCTION 

 

Study of pollutant transport proposed since several decades through various mathematical, 

numerical and experimental approaches to predict the concentration distribution pattern in 

subsurface regions (Ebach & White, 1958; Corey et al., 1970).  The analytical solutions were 

discussed for the various types of advection-dispersion equations (Gershon & Nir, 1969). In 

their study, they explored the effects of initial and boundary conditions for the distribution of 

tracer in time and space domain for several one‐dimensional systems such as (infinite, semi‐
infinite, and finite). A mathematical study for the purely advective multilayer finite porous 

media were developed by using Laplace transforms technique (Higashi & Pigford, 1980). 

Later, other mathematical solutions were explored for the advective–dispersive equation in 

the multilayer’s aquifer (van Genuchten, 1985). He developed few results for the movement 

of the contaminant in one-dimensional semi-infinite field with the help of Laplace transform 

and obtained the solutions up to four species using either first-type (Dirichlet) or third-type 

(Cauchy) inlet boundary conditions. Similarly, the analytical and numerical solutions were 

demonstrated for the solute transport in saturated porous media with the semi-infinite or finite 

thickness (Gelher & Collins, 1971; Sim & Chrysikopoulos, 1999; Smedt, 2006; Srinivasan & 
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Clement, 2008). The groundwater flow and radionuclide movement in single fractures with 

diffusion was discussed in (Saied & Khalifa, 2002). The solute transport along with the 

longitudinal dispersion and time-dependent source condition was discussed in a semi-infinite 

aquifer with the unsteady groundwater flow, where dispersion and velocity was considered as 

functions of time variable (Singh et al., 2014). The pollutant’s horizontal dispersion was 

demonstrated along and against sinusoidally varying velocity from a pulse type point source 

(Singh et al., 2015).  Further, a study regarding the dispersion of depth dependent source in 

the two dimensional (2D) homogeneous porous medium was established in (Chatterjee & 

Singh, 2018). The arbitrary inlet boundary conditions were used to obtain a generalised 

analytical solution for the pollutant transport (Chen & Liu, 2012; Chen et al., 2012). Recently, 

the pollutant dispersion in semi-infinite porous medium were analysed with the impact of 

source sink term (Kumar et al., 2020) and the analytical solution regarding the pollutant 

transport along and against the groundwater flow was discussed in a semi-infinite porous 

medium (Singh et al., 2020).  

The pollutant migration in multilayer aquifer via experimental, analytical and numerical 

simulations is rarely available in the hydrological literature. The main concern of this study is 

to examine how groundwater is contaminated through the soil, how pollutant would reach to 

the different zones of the compacted layer aquifer and how it may affect the groundwater 

available in pore spaces of the geological formations. As the migration of the pollutant 

through relatively impermeable soils is quite slow and therefore, the time required to reach 

the groundwater reservoir may ranges from several to hundreds of years. The 1D pollutant 

transport was discussed in the soil of finite depth (Rowe et al., 1985) and they discussed the 

pollutant transportation through clay layer of the finite depth. For the most practical situation, 

it was observed that the pollutant within the groundwater beneath of the landfill reached to a 

peak value at a specific time and then decreased with subsequent time. An analytical solution 

was studied for the one-dimensional solute transports with constant concentration at inlet 

boundary in the finite layer media (Alniami & Rustan, 1979) and adopted Laplace transform 

technique to develop the analytical solution without sorption and decay. 1D analytical and 

numerical results were proposed in two-layer porous media (Leij & Van Genuchten, 1995) 

and observed that the use of the Laplace transform technique become more complicated to 

predict the contaminant pattern at the interface boundary. An integral transform technique was 

used to predict the analytical solutions for the pollutant transport in porous media (Liu et al., 

1998). The solute transport was investigated in the two-layer porous medium which was 

separated diagonally (Ghamariadyan et al., 2016) and discussed the effect of various 

parameters on the transport processes. 

Advection-diffusion equation is not only applicable to study solute transport behaviour in 

groundwater but also in many other fields such as heat transport, air pollution modelling and 

many others fields. Air pollution modelling was discussed with the planetary boundary layer via 

discretization in sub layer (Vilhena et al., 1998). In each sub layer, the advection- diffusion 

equation was solved by Laplace transform technique. The one-dimensional solute transport was 

studied in double layer finite porous medium using finite element approach (Li & Cleall, 2011). 

The solution was described with five different scenarios with various combinations of fixed 

concentration, fixed flux and zeros concentration gradient at the input and output boundaries. 

ADE with the first-order decay was solved analytically for multilayer media using the classical 

integral transform technique (Guerrero et al., 2013). A case study was presented for the 

perimeter drilling survey regarding lakeside municipal solid wastage landfill (Yoshida et al., 

2002) and obtained three consecutive aquifers isolated with each other at certain depth in that 

landfill. Pollutant was found extremely high in the uppermost sub layer compare to others.  
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In all the multilayer dispersion model as discussed earlier, mostly constant flow and 

constant dispersion were assumed. The present study is proposed to study the pollutant 

migration behaviour through the agricultural, industrial, domestic and other sources to the 

groundwater reservoir and subsequently in multilayer aquifer. The analytical solution is 

derived for the 1D ADE under sorption and first-order decay in a homogeneous multilayer 

porous media with time-dependent dispersion and flow velocity. Initially, aquifer is not 

assumed to be pollutant free and therefore, some constant background concentration may 

exist in each sub layer. Point source is considered at the inlet of the upstream boundary of the 

UML and some average value of concentration is considered from the previous layer at the 

intermediate inlet boundary for the other layers of the aquifer. Pollutant source is highly 

affected the upper layer of aquifer compare to other intermediate layer only because the 

distribution of contaminant decreases with the space variable. A semi-infinite aquifer is 

discretized into sub layers accordingly. 

 

SYMBOLIC DISCRIPTION 

 

cN (x, T)    Plume concentration in suspension (liquid phase) [ML
-3

] for the N
th 

layer 

x, t            Space [L] and time [T] variable 

RN            Retardation factor for the N
th

 level (dimensionless quantity) 

DN (t)       Longitudinal dispersion coefficient [L
2
T

-1
] for the N

th
 layer 

D0N           Initial dispersion coefficient [L
2
T

-1
] for the  N

th
 layer

 
 

C0              Input source concentration [ML
-3

] for the UML 

cNi              Initial background contaminant concentration [ML
-3

] for the N
th

 layer 

UN (t)         Groundwater velocity [LT
-1

] for the N
th

 layer 

U0N            Initial groundwater seepage velocity [LT
-1

]
 
for the N

th
 layer  

 (t)         Groundwater velocity pattern, [T
-1

]  

N              The first-order decay rate [T
-1

] for the N
th

 layer   

Kd               Solute solid-phase concentration [MM
-1

]under sorption condition 

N               The porosity of the N
th

 layer 

                The density [ML
-3

]of geological landfill 
 

 
Figure 1. Geometry of the proposed model for the 1D multilayer’s semi-infinite porous medium. 
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MATHEMATICAL FORMULATION 

 

The geometry of the model problem is shown in Figure 1. The proposed model for the 

multilayer aquifer is developed with the help of Darcy’s law. Each finite homogeneous layer 

with unsteady pore-water flow velocity ( )NU t  is considered. The positive x  coordinate is 

measured along the pore-water flow
 
direction, and the initial boundary is chosen at the origin 

of the coordinate system. Each layer has its own temporally dispersion coefficient ( )ND t with 

retardation factor NR  and porosity N . The subscript N  represents the number of layers. 

Unsteady 1D advection-dispersion transport equation for the quantity ( , )N Nc c x t
 
in a semi-

infinite porous media with some hydrological properties in each level is described as: 

 
2

'

2
( )N N N

N N N N N

c c c
R D t U t c

t x x


  
  

  
 (1) 

Subscript 1,2,3,4.....N n
 
is denoted the sub layer of the geological landfill.  

In each sub-layer, an average dispersion ND  and seepage velocity NU  are assumed 

(Ogata, 1970). Here dispersion varies as the first power of seepage flow velocity. Hence, the 

dispersion and seepage velocity are expressed as follows:
  

0 ( )N NU U t   and
 0 ( )N ND D t   (2) 

( t)   is assumed as an exponentially decaying sinusoidal function of time t , with the 

flow resistance coefficient  . Retardation factor of each sub layer of the groundwater under 

the linear sorption process may occur when pollutant enters into the soil water reservoirs. 

Here, 
 1

1
N

N N d

N

R K






   

where, dk  is the sorption coefficient, N  is the density of each sub layer and N  is the 

porosity of the each sub layer. In case under no sorption condition ( 0)dk  , the retardation 

factor is treated as constant. 
0ND  and 0NU  are the initial dispersion and seepage velocity 

coefficients, respectively for each sub layer in a geological landfill. As we know that near the 

dumping area of garbage, pollutant leaches slowly underground and reaches to the aquifer 

layer by layer as it moves downward. The impact of dispersion and flow velocity also 

decreases towards the depth as contaminant concentration decreases along with the depth of 

the aquifer. For each sub-layer of the aquifer, we assume that each layer is partially polluted. 

At the input boundary, some constant type point source is injected at the uppermost level 

which is considered near the water table and other layers are just blow the upper most layer. 

The aquifer is assumed semi-infinite with constant type boundary conditions to model the 

system mathematically. For the discontinuity at each layer, the average value of the 

concentration is estimated from the previous layer at each level of the input boundary. 

Initially, each sub layer is not pollutant free that means some background pollutant 

concentration may exist in the aquifer. A constant background concentration Nic  is assigned 

in each layer throughout the porous medium accordingly.  

   , ,N Nic x t c x t ; 0t  , 1N Nx x x    (3) 

At each of the intermediate boundary, an average input source concentration is assumed 

except at the uppermost boundary a constant input source is considered as 0C . 

   1, ,N Nc x t c x t ; 0t  , 1Nx x   (4) 
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At the extreme boundary, the concentration gradient is assumed to zero in each sub layer of 

the domain. The outlet boundary for the intermediate layer is assigned at Nx x  and in case 

of extreme layer the outlet boundary for the semi-infinite medium is considered at x . 

0Nc

x





; 0t  , Nx x  (5) 

 

ANALYTICAL SOLUTION 

  

For the solution of the proposed model, transformation in the form of new time-variable is 

introduced (Crank, 1979) as follows: 

 
0

  
t

T t dt  (6) 

Using Eqns. (2) and (6), Eqn. (1) can be written as follows: 

0 0

2

2N N

N N
N N N

c c c
R D U c

T x x


  
  

  
 (7) 

where, 
 

'

N
N

t




 
  is described as first-order decay term for each sub layer of the aquifer zone. 

And the corresponding initial and boundary conditions for each sub layer can be written in 

new time variable as follows: 

   , ,N Nic x T c x T ; 0T  , 1N Nx x x    (8) 

   1, ,N Nc x T c x T ; 0T  , 1Nx x   (9) 

0Nc

x





; 0t  , Nx x  (10) 

Now to remove the advection term from Eqn. (7), the following transformation is used: 

   
2

0 0

0 0

1
, , exp

2 4
 

   
    

   

N N
N N N

N N N

U U
c x T x T x T

D R D
 (11) 

 

Case study of each sub domain 

 

The main objective of this study is to predict the pollutant concentration behaviour in 

multilayer aquifer. The impact of solute transport is observed in each sub-layer at the same 

time period and therefore, the pollutant concentration behaviour in each sub-layer with 

specified length can be shown accordingly. The length of each sub-layer is considered such as 

for the first layer 0 1x x x  , for the second 1 2 x x x , for the third 2 3 x x x  and so on for 

the remaining layers. Here, 0 0x   is the origin at which pollutant is injected into the aquifer 

from the UML of the domain.  

For 1N , the uppermost layer (UML) of the aquifer, the proposed model is given below: 

01 01

2

1 1
1 1 12


  

  
  

c c c
R D U c

T x x
 (12) 

Inlet and outlet boundary conditions given in Eqns. (8-10) can be transformed as follows: 

 1 1, ( , )ic x T c x T ; 0T  , 0 1x x x   (13) 

 1 0, ( , )c x T c x T ; 0T  , 0x x  (14) 
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1 0
c

x





; 0T  , 1x x  (15) 

Initially, the position 0x  is assumed at the origin i.e., 
0 0x  

and 
0 0( , ) c x T C  is the input 

initial maximum source contaminant concentration at the origin. 1ic  is assumed as constant 

background concentration for the UML of an aquifer and 01D  and 01U  are the longitudinal 

dispersion and seepage flow velocity along the x -direction of the UML. The effect of the first 

order decay 1 , linear sorption dk  and retardation factor 1R  are considered. The solution of 

the modelled problem for the Eqns. (12-15) is written as follows (Singh et al., 2014; Singh & 

Das, 2015): 

   
2

01 01
1 1 1

01 1 01

1
, , exp

2 4
 

   
    

   

U U
c x T x T x T

D R D
 (16) 

where, 1 0 1 1 1 0 1( , ) * * *ix T C A c B C C     (17) 

As we mentioned earlier that the length of UML aquifer ranges 0 1x x x  , where, 0 0x   

and 1 1x L  (length of the first sub-domain) and the details of 1A , 1B  and 1C  are described in 

appendix-1.  

The solution of the second sub layer of the landfill is discussed for the domain length

1 2x x x  . As this region of the aquifer is not directly connected with pollutant dumping area 

and therefore, the input source for this region from the previous layer is arrived. We assumed 

some average value of concentration at the intermediate boundary as an input point source for 

the second layer. The model for the second sub-layer i.e., 2N   at the same time period is 

written as follows: 

02 02

2

2 2 2
2 2 22


  

  
  

c c c
R D U c

T x x
 (18) 

The initial and boundary conditions for the second sub layer are taken as follows: 

 2 2, ( , )ic x T c x T ; 0T  , 1 2x x x   (19) 

 2 1, ( , )c x T c x T ; 0T  , 1x x  (20) 

2 0
c

x





; 0T  , 2x x  (21) 

All the parameter which we have taken in this section has the similar meaning as in UML 

of the problem. The pollutant concentration distribution is obtained for 
2 ( , )c x T  with the set 

of Eqns. (18-21). Since this region of the aquifer lies between 1x
 
to 2x

 
so, the length of the 

sub-layer varies from 1 1x L
 
to 2 2x L  .  The required solution of this layer is obtained as 

follows: 

   
2

02 02
2 2 2

02 2 02

1
, , exp

2 4
 

   
    

   

U U
c x T x T x T

D R D
 (22) 

where,   2 1 1 2 2 2 1 2( , ) exp * * *    ix T L c A c B c C  (23) 

The details of 
2 ( , ) x T  is shown in appendix-1 and the coefficients 2A , 2B  and 2C  

mentioned in Eqn. (23) can be obtained in a similar manner as 1A , 1B  and 1C  has been 

obtained for the first layer. Similarly, the same can be repeated for the 3rd , 4th  and up to 
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thN  layer. At each intermediate sub layer, the value of input point source is acquired as the 

average concentration value from the previous one. 

 

RESULT AND DISCUSSION 

  

The pollutant concentration in semi-infinite multilayer porous medium is investigated 

analytically for two or three layers only. Initially, each layer of geological formation is 

contaminated with some constant background concentration. As we move along with the 

aquifer length, the contaminant concentration decreases. In each level, initial background 

concentration is considered in decaying form from upper to lower layer. The strength of 

pollutant concentration of the input source is assumed 1 ( / )mg L  at the inlet boundary of the 

UML. The intermediate inlet boundary for each sub-layer is assumed as some average value 

of concentration from the previous layer and time is taken in years. At each layer of the 

aquifer, first-order decay, sorption and the other parameters data are considered in the 

reasonable range from the existing hydrological literature (Singh & Kumari, 2014; Gelhar et 

al. 1992). The flow resistance coefficient is taken 1/ year  .  Dispersion and flow velocity 

are considered as varying sinusoidal form i.e.,    1 sinf t t   . As we know that the 

groundwater seeps slowly with time, so for mathematical modelling of the system, very few 

functions are often used along with seepage flow. If we take the series expansion of such type 

of functions, we see that the noteworthy contribution is coming from constant source and a 

negligible impact is coming from the variable-dependent term. One can use constant source at 

the inlet boundary instead of time-dependent one. The model is applied for addressing the 

groundwater pollution problems. For each sub-layer of geological formulation, the sinusoidal 

dispersion, velocity, average porosity   and bulk density   are considered as follows 

(Manger, 1963; Freeze & Cherry, 1979). 

 

 
Table1. Input data for graphical illustrations for each layer of domain. 

Parameters Value 

U0 0.02 km/ year 

D0 0.035 km2/ year  

0 0.1/ year 

Kd 0.15 


 

2.19 

 

Case analysis of result and discussion 

 

Case1: In the proposed study, the whole aquifer is considered as a single geological 

formulation in a semi-infinite domain, with the porosity 0.32  (gravel) and initial 

background concentration 
1 0.1ic  mg/L. The domain of the aquifer is considered as 0 0.8x   

km at the fixed time period t=2  years and t=3  years with the linear sorption and first order 

decay terms. Other required data for the graphical presentation is given in the Table 1. Here, 

we discussed two real-life scenarios for the pollutant migration in aquifer (1) In the presence 

of input source at the inlet boundary and (2) In the absence of input source at the inlet 

boundary. 

In the presence of the input source i.e., 
0( 1)C  , at 

0 0x  , pollutant concentration is started 

from the peak of the input source and subsequently decreases along with the space variable x , 
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it is represented by the blue line curve shown in the figure 2. In the absence of input source 

concentration i.e., 
0( 0)C   is started from the origin of the domain and vanished up to initial 

present background contaminant concentration in the aquifer represented by the black line 

curve shown in the figure 2. As we know that pollutant concentration increases with 

increasing time, so the contaminant concentration is higher at t=3 years, than compare to t=2 

years in the presence of input pollutant source. But, in the absence of input source, it reverses 

the scenario for the pollutant distribution under the same situations. Pollutant concentration is 

started from the lowest concentration value i.e., zero and is vanished up to strength of initial 

background concentration to the other end of the domain. 

 
Figure 2. Pollutant concentration distribution profile for the case (1), in presence or absence of input 

point source at the inlet boundary of the domain. 

 

The pollutant concentration distribution for the single-layer aquifer at fixed time t=1 year 

is discussed for the input source at the inlet boundary, i.e., 
0 0x   due to agricultural, drainage 

wells or industrial activity with the fixed dispersion and different seepage velocities. Pollutant 

concentration decreases towards the other end of domain and is asymptotically approached to 

zero may be because of remedial measures taken. We observed from figure 3 that the 

concentration values for all four velocity profiles initially started from 1 mg/L at the inlet 

location of the aquifer for the domain length 0 0.8x  km. The concentration value attains 

maximum at each position for the higher velocity profile compare to low velocity in gravel 

medium. The rate of decrease of the pollutant concentration is faster for the low-velocity 

profile along the flow direction as shown in the figure 3. 
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Figure 3. Pollutant concentration distribution profile for case (1) at different value of seepage flow 

velocity. 

 

Case2: In this case we predicted the contaminant concentration profile for two layers of 

aquifer with different initial background concentrations. For the figures 4 and 5, the first layer 

1 0.1ic  mg/L and second layer 
2 0.001ic  mg/L under same geological properties are 

considered as proposed in Table 1.  The length of the domain is considered in two range 

10 0.3x  km and 
20.3 0.8x  km for the first layer and second layer, respectively. Input point 

source i.e., 0 1C   is considered at the UML of the aquifer and for the other average value of 

concentration is taken at the inlet boundary of the lower layer.  

The pollutant concentration distribution profile is shown in figure 4 for two-layers of 

aquifer at different time period with the same sorption and first-order decay terms as 

considered in Table 1, with the same porosity 0.32  (gravel) in both the layers. We 

observed that the contaminant concentration profile initially starts from the input value, i.e., at 

0 0x   of the UML of the aquifer. It means that the concentration value at the inlet location of 

the first layer of the aquifer is highest, but the concentration value decreases when distance 

increases at the three particular time periods. At 5t   years contaminant concentration attains 

higher concentration level compare to 3t   years and 1t   year. For both the layers, pollutant 

concentration is higher for an extended time period as compare to the small-time period. The 

rate of decrease of pollutant concentration is faster for a shorter time period towards the outlet 

boundary in both the layers. 

The contaminant concentration profile is depicted and shown in figure 5 for the two-layers 

of aquifer with different porosity of each layer at the fixed time period at 2t   years and the 

other transport parameters data is considered as in Table 1. The porosity of the upper layer 

(gravel) i.e.,  0.32   and three different types of porous medium for the second layer are 

assumed. Figure 5 shows that contamination concentration decreases along with space 

variable x  for the first layer and some average value of pollutant concentration is taken at the 

inlet of the second layer from the previous one. The pollutant concentration distribution is 

observed for the second layer in three different porous medium such as clay, gravel and 

sandstone. It is also observed that the contaminant concentration for the higher porosity (clay)
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0.55   is higher than that of 0.32  (gravel) and 0.23  (sandstone). The rate of increase 

of pollutant concentration is faster in higher porous medium than that of lower one. 

 
Figure 4. Pollutant concentration distribution profile for case (2) in two layer aquifer at different time 

period. 

 
Figure 5. Pollutant concentration distribution profile for case (2), with different porosity for the 

second layer. 

 

Case 3: In this case, outlet boundary of the last layer is assumed at x  as aquifer 

domain is considered semi-infinite. Here, we studied simply three layers of aquifer in the 

porous medium. Length for each layer is considered as 
10 0.3x  km, 

20.3 0.6x  km and 

km, respectively and all the parameters for the graphical representations are 

considered according to Table 1. 

The pollutant distribution profile is discussed in three layers of aquifer and shown in the 

figure (6). We assumed the geological formations with the same hydraulic property as 

described in Table 1. Initially, each layer is assumed as not solute free and therefore the 

background concentration of each layer is considered as 
1 0.1ic  ,

2 0.001ic  ,
3 0.001ic  mg/L, 

respectively with porosity 0.32  (gravel) at the fixed time period t =2 years. A sinusoidal 
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varying velocity pattern is considered in each layer. The inlet source concentration for the 

UML is considered same as the previous cases, and for the intermediate layer the source 

concentration at the inlet boundary is assumed as some average value of concentration from 

its upper layer for the continuity. The three pollutant concentration patterns are shown in 

figure (6) and represented by red, blue and green line curves. In the first domain, contaminant 

concentration is maximum because of the presence of input source at 0x   and it goes on 

decreasing from layer to layer.  In the present problem the pollutant distribution goes on 

decreasing along the space variable. The pollutant concentration profile in the last layer 

shown by green line curve is almost vanished up to zero than compare to the previous layer.  

 
Figure 6. Pollutant concentration distribution profile for case (3), in three-layer aquifer. 

 

The pollutant concentration distribution is predicted with respect to time at some fixed 

locations with the same input data as shown in Table 1 with dispersion and sinusoidal velocity 

pattern (  0N ND D f t ,  0N NU U f t ). The results are discussed for the two-layer aquifer in 

gravel porous medium as shown in figure (7). The pollutant distribution curves are observed 

in time domain at 2t  years. Here, we discussed two cases for the pollutant distribution in 

time domain at the two sets of locations 
1 2( 0.3, 0.5)x x  km and 

1 2( 0.5, 0.3)x x  km, 

respectively. The pollutant concentration level decreases on increasing the value of space 

variable in the both cases. Also, the concentration pattern corresponding to the location 

1 2( 0.5, 0.3)x x  km shows the variation in concentration distribution with respect to the 

increasing time.  Similarly, for the second location 
1 2( 0.3, 0.5)x x  km shows the similar 

pattern in specified time domain. The contaminant concentration for the layer 1 and layer 2 is 

shown by a blue and black line curves as expressed in figure 7. The pollutant concentration 

for the location 1 and location 2 decreases on increasing value of the space variable and 

increases with respect to time variable.  
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Figure 7. Pollutant concentration distribution profile at different locations in two layer aquifer. 

 

Affirmation and authorisation of the problem 

 

Groundwater pollution problem has been discussed extensively by many researchers in the 

last three to four decades with respect to solute transport modelling in a landfill. Only few 

studies were made in a multilayer aquifer system. In most of their problems, constant 

dispersion and constant seepage velocity or only the diffusion is considered for modelling. 

The multilayer aquifer in landfill is also discussed by many researchers experimentally. The 

coupled flow and advective-dispersion was simulated in multilayer leaky aquifer through a 

numerical transport models (Székely, 1987). A study for the transportation of salt-water in 

multilayer groundwater system underlying the Bangkok metropolitan area was proposed in 

(Gangophayay & Gupta, 1995) and in their study of the particular region, it was observed that 

local area basically consists of multilayer aquifer in the closed-form of clay-sand-gravel-sand-

gravel. A field study of particular site location of Nigeria was carried out by (Yoshida et al., 

2002) and groundwater sampling was made at a lake-side of municipal solid waste (MSV) 

landfill.  Three different aquifers below the landfill were found and observed that all the 

aquifer isolated with each other. It was observed that the pollutant was exceptionally higher in 

the upper most aquifer than lower one. Similarly, various results were discussed regarding the 

solute transport modelling in multilayer aquifer (Leij & Van Ganatchen, 1995; Guerrero et al., 

2013) and provided the same effect of pollutant concentration concerning space and time 

variable.  

 

CONCLUSION 

 

The study of groundwater pollutant concentration distribution is carried out for the semi-

infinite multilayer aquifer which is further divided in finite number of sub layers.  Laplace 

transform technique is adopted to obtain the solute transport behaviour in the multilayer 

aquifer.  Pollutant transport phenomenon is studied by considering different cases for 

multilayer geological landfill.  The pollutant concentration is decreased with the space 

variable in each layer of the aquifer and approach to zero at the extreme end of the aquifer. 

The pollutant concentration is increased for the higher porous geological material under the 
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same dispersion and groundwater seepage flow. The change in concentration level is also 

observed in different time periods.  The pollutant concentration in multilayer aquifer, decay 

pattern is remains same in each layer of geological landfill with same geological properties. 

 

Appendix-1 

 

At each of sub layer of aquifer, pollutant concentration can be obtained by applying the 

Laplace transform technique (LTT).  Using Eqn. (11) in Eqns. (12-15) for 1N  , we obtained 

the followings: 
2

1 1
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R D
T x
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The transformed Eqns. (24-27) can be written as follows: 
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where, P  is the transform time variable in Laplacian domain. The solution for the layer 1 in 

Laplacian domain can be obtained as follows: 
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Furthermore, by taking the inverse Laplace transform of Eqn. (31) we obtained the value of 

1  
given in Eqn. (17) where 1A , 1B  and 1C  are given as follows: 
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The other parameters involved in Eqns. (31-34) are given as follows: 
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and 01

01 12

U
m

D R
 . 

On substituting the value of 1A , 1B  and 1C  in Eqn. (17) we obtained the required 

concentration values for the UML. Similarly, one can predict the contaminant concentration 

for the second sub-layer as the domain of this region lies between 1 2 L x L .  Eqns. (18-21) 

can be further obtained by applying the similar technique as discussed above for the previous 

layer and the input source for the second layer will be average pollutant concentration at the 

intermediate boundary from the UML to maintain the continuity. The value of the parameters

2A , 2B  and 2C  in Eqn. (23) can be further obtained in similar manner as in Eqn. (17). The 

intermediate value for the coefficients 1Z , 2Z  and 3Z  for the second layer will replace in 

Eqns. (28-30) as  

       1 2 1 2 2 1 3 2 1 4 12 ; 2 3 ; 4 3 ;Z L L x Z L L x Z L L x Z x L          
 

By substituting all these values in Eqn. (22) we obtained the solution for the second sub 

layer. On proceeding in a similar manner, we may able to find the solution for 3rd , 4th … up 

to 
thN  sub layer as well. 
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