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ABSTRACT 
Atmospheric aerosols are very crucial from air pollution and health perspective as well as for regional 

and global climate. This paper attempts to summarize the aerosol loading and their properties such as 

Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), Angstrom exponent, and Radiative 

forcing, over India. All the above mentioned parameters have shown significant variability with 

change in the site and season. From various studies it was observed that AOD is relatively higher over 

Northern part of India as compared to Southern and Eastern part. Generally, lower values of SSA were 

observed over all sites during winter and post-monsoon seasons which indicates the dominance of 

absorbing type aerosol during these seasons. Also the ARF within atmosphere showed comparatively 

higher values during November-December and lower value during August and September all over the 

India. The current state of knowledge about aerosol sources, interactions and their effects on 

environment is limited because of its complexity. Therefore, more focused research in needed to 

understand the aerosol’s role in climatic phenomenon. 

Keywords: Aerosol properties, AOD, SSA, Angstrom exponent, Radiative forcing, Indian 

subcontinent. 

 

INTRODUCTION 

 

India is one of the densely populated developing countries where industrialization and 

construction work is going on a large scale, which adds up high load of aerosols into the 

atmosphere every year. Atmospheric aerosols are minute/microscopic particles in solid or 

liquid phase suspended in the atmosphere including sea-salt, mineral dust, sulphates, nitrates, 

ash, soot, and black carbon. These can be originate from both natural processes such as 

volcanic eruption, windblown dust, forest fires, sea spray etc. as well as from anthropogenic 

activities such as agriculture, industrial, burning of fuels etc. (Ranjan et al., 2007; Pipal and 

Satsangi, 2015; Gawhane et al., 2019; Fadnavis et al., 2019). Aerosols are mixed and 

transported by atmospheric motions and removed from the atmosphere either by the surface of 

the Earth (dry deposition) or by clouds and precipitation processes (wet deposition) (Emerson 

et al., 2018; Tai et al., 2017; Mori et al., 2014; Shannigrahi et al., 2015; Dolskeand Gatz, 

1985). Atmospheric aerosols are crucial entities which not only influence the radiative budget 

but also affect the Indian monsoon and other regional atmospheric phenomenon. 
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In recent years, atmospheric aerosols are receiving more attention from scientific 

communities due to influence on air quality, global climate, atmospheric visibility and human 

health (Ancelet et al., 2013; Chung et al., 2012; Pachauri et al., 2013; Kumar et al., 2018; 

Mishra and Kulshrestha, 2021; Gulia et al., 2021; Gunthe et al., 2021). Atmospheric aerosols 

represent the nature of atmosphere and strongly influence the climate system and earth’s 

radiative budget directly by absorbing and scattering solar radiation (Alam et al., 2012; 

Charlson et al., 1992; Che et al., 2005; Liu et al., 2011; Sinha et al., 2013) and indirectly, 

through their role as cloud condensation nuclei (Huang et al., 2010; Levy et al., 2013; 

Takamura et al., 2007).  

Different types of aerosol scatter and absorb solar radiation at varying degrees, depending 

on their optical and physical properties. Generally, aerosols are believed to employ a cooling 

influence on climate e.g. sulphate, nitrate produces a cooling effect on globe by scattering and 

reflecting incoming solar radiations (Charlson et al., 1992; Kiehl and Briegleb, 1993). In 

contrary, aerosols such as elemental carbon or equivalent to black carbon which are effective 

absorber of solar radiation acts as the most important driver of aerosol induced global 

warming (Bollasina et al., 2011; Bond et al., 2013) (Figure 1).  

 

 
Fig 1. Direct and indirect effects of atmospheric aerosols. 

 

The effect of aerosol on earth-atmosphere system was very complex due to their 

interaction with cloud cover because aerosol particles act as cloud condensation nuclei (CCN) 

and ice nuclei (IN), which affects the cloud albedo, cloud lifetime and the precipitation 

processes (Andreae et al., 1995; Gu et al., 2012; IPCC 2007; Jiang et al., 2011; Lohmann and 

Feichter, 2005; Simpkins, 2015; Nakata, 2018).  

Therefore, accurate assessment of aerosol’s optical and radiative properties is crucial to 

overcome the uncertainties associated with global warming and to completely understand 

impact of aerosols on Earth-atmosphere system. In India, various studies have been carried 

out regarding the assessment of aerosols optical properties, their spatial, temporal variation, 

and their impact on radiative budget and climate (Bisht et al., 2015; Dey and Girolamo, 2011; 

Patel and Kumar, 2015; Srivastava et al., 2014; Vaishya et al., 2018, Brooks et al., 2019; 
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Bansal et al., 2019; Govardhan et al., 2019). This paper summarizes the literature regarding 

aerosols optical and radiative properties over Indian subcontinent. 

 

AEROSOL OPTICAL PROPERTIES  

 

Aerosols optical properties are govern by their interaction with solar radiation. From the 

climate prospective, the most crucial aerosol optical properties are AOD, SSA and angstrom 

exponent. All these properties determine how the aerosol particle interacts with solar 

radiation. These properties are ultimately depends upon the chemical nature, composition and 

source of emission. Aerosol optical properties show strong diurnal, seasonal and annual 

variability over northern India. These variations has been attributed to variety of emission 

sources, coupled with meteorological conditions, boundary layer dynamics and mixing state 

(Lodhi et al., 2013; Ram et al., 2012b; Ram and Sarin, 2009; Tiwari et al., 2015a). 

 

Aerosol Optical Depth (AOD) 

 

AOD is strongly dependent on wavelength and it is a common parameter to identify both 

sources of aerosol generation and their evolution as it represents the aerosol loading in the 

atmospheric column (Kumar et al., 2013; Mukherjee and Vinoj, 2020). The spectral 

dependence of AOD varies with various aerosol types due to their different chemical and 

physical properties on the basis of the source of generation and evolution of aerosol. Large 

spectral dependence was observed in many studies and higher values were found at shorter 

wavelengths than longer wavelengths (Balarabe et al., 2016; Kumar et al., 2013; Mishra et al., 

2013; Srivastava et al., 2012). Mishra et al. (2013) also reported strong wavelength 

dependence at shorter wavelengths than longer wavelengths, thereby suggesting the 

dominance of fine mode particles in comparison to coarse mode particles in the atmosphere 

(Srivastava et al., 2012). This clearly shows systematic wavelength dependence according to 

classical Mie scattering theory.  

In another study, (Ranjan et al., 2007) similar trends of decreasing AOD with increasing 

wavelength was observed over Rajkot from March-2005 to March-2006. They have found 

that the higher wavelength AODs are more influenced by naturally produced coarser dust 

aerosols, while the fine mode aerosol particles are mostly generated from various 

anthropogenic activities which show more contribution to AOD at shorter wavelengths than 

longer wavelengths. From this it is evident that lower wavelength AOD are more sensitive to 

fine mode particles while higher wavelength AOD are more sensitive to coarse mode 

particles.  

AOD also showed seasonal variations in spectral dependence because it is a function of 

particle size distribution (Suman et al., 2013). Srivastava et al. (2012) observed large spectral 

dependence of AOD during winter season due to dominance of fine mode aerosol and less 

spectral dependence during summer season, due to the more contribution of coarse-mode 

aerosols like dust particles. Dominance of coarse mode particles enhances AOD at both 

shorter and longer wavelengths equally whereas on the other hand fine mode aerosol enhances 

more AOD at shorter wavelength than longer wavelength; therefore leads to less spectral 

dependency during pre-monsoon and monsoon seasons (Schuster et al., 2006). 

Several studies have shown significant monthly and seasonal variations in AOD over 

different sites of Indian subcontinent such as Manora peak (Srivastava et al., 2015), Pune 

(More et al., 2013), Kanpur (Ram et al., 2016); Delhi (Soni et al., 2010; Tiwari et al., 2016); 
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Greater Noida (Sharma et al., 2014); Jaipur (Verma et al., 2015). This clearly indicates the 

variability in emission sources, meteorological and atmospheric conditions with seasons.  

 
Table 1. Seasonal variation in AOD at different locations of India. 

Study area Period AOD at 500nm Reference 

  Winter 
Pre-

monsoon 
Monsoon 

Post-

monsoon 
 

Kanpur 2005-2010 0.63 0.59 0.60 0.76 Kaskaoutis et al., 2012 

Jaipur 2011  0.50-0.80   Tiwari et al., 2013 

Dibrugarh 2001-2007 0.31 0.45 0.25 0.19 Gogoi et al., 2009 

Ahmedabad 2002-2005 0.32 0.42 0.43 0.43 Ganguly et al., 2006 

Kullu valley 2006-2009 0.20 0.34 0.26 0.21 Guleria et al., 2012 

Delhi 2011-2013 0.95 0.82 0.86 1.0 Tiwari et al., 2016 

Varanasi 2011 0.90 0.67 0.68 0.78 Tiwari and Singh, 2013a 

Goa 2000-2002 0.41 0.48   Suresh and Desa, 2005 

Hyderabad 2009-2010 0.39 0.53 0.37 0.37 Sinha et al., 2012 

Kharagpur 2009-2010 0.82 0.71   Pani and Verma, 2013 

Nainital 2005-2008 0.11 0.30 015 0.09 Ram et al., 2010 

Trivandrum 2000-2003 0.43 0.40 0.29 0.38 Moorthy et al., 2007 

Port Blair 2002-2008 0.31 0.26   Beegum et al., 2012 

Patiala 2009 - - - 0.64 Sharma et al., 2012 

Anantapur 2005-2006 0.46 0.50 0.37 0.40 Kumar et al., 2009 

Delhi 2001-2012 0.77 0.78 0.74 0.91 Lodhi et al., 2013 

 

Higher values of AOD during post-monsoon and winter seasons were attributed to the 

paddy crop residue burning in northern part of India (Prasad et al., 2006; Ram et al., 2010; 

Singh, 2010). Fire crackers burning on Diwali festival also contributes to the higher AOD 

during post-monsoon season. In another study, Chatterjee et al. (2012) found 25% and 40% 

increases in AOD values during winter and pre-monsoon season over Darjeeling for the time 

period of 2008. They have also observed 0.55% increase in AOD for every 1% increase in 

anthropogenic aerosols during winter and 0.46% increase in AOD with 1% increase in wind 

generated dust aerosols during pre-monsoon season. From this it is evident that during pre-

monsoon season, wind generated natural dust aerosol while during winter anthropogenic 

aerosols play major role in increment of AOD. 

Various studies have reported higher AOD over northern part of India as compared to 

southern part (Dey et al., 2012; Gautam et al., 2007; Prasad et al., 2007; Sarkar et al., 2006; 

Singh et al., 2004). The similar pattern has been reported by Tiwari and Singh (2013). 

 

Angstrom Exponent (α) 

 

Angstrom exponent (α) is a function of aerosol size distribution and depends on the relative 

dominance of fine to coarse mode aerosols (Gadhavi and Jayaraman 2010; Deep et al., 2021). 

Higher values of angstrom exponent mean the contribution of the fine mode particles 

dominating, whereas lower values of angstrom exponent indicate the dominance of coarse 

size particles (Alam et al., 2011).  
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Kumar et al. (2011) observed significant seasonal variation in α value over Pune with 

annual range of 0.3-1.7. The average values of alpha during post-monsoon, winter and pre-

monsoon season are 1.19, 1.27 and 0.99, respectively. Kaskaoutis et al. (2012) and Lodhi et 

al. (2013) have reported the higher values of angstrom exponent during post-monsoon and 

winter seasons over Delhi, Kanpur, respectively. Which are associated with the dominance of 

anthropogenic aerosols whereas the lower values during pre-monsoon and monsoon seasons 

are associated with higher loading of dust over Indo-Gangetic Basin.  

In another study, Sharma et al. (2014) also observed the similar annual mean pattern over 

Greater Noida with large values (>1.0) during post-monsoon and winter while the lower 

values (<0.7) during pre-monsoon and early monsoon seasons. Large variability in angstrom 

exponent values has been observed during monsoon, this indicates heterogeneous atmosphere 

with large variability in source, type and optical properties of aerosols, while lower range of 

angstrom exponent was observed during late post-monsoon and winter. Similarly large range 

of angstrom exponent (0.06-1.19) and (0.15-1.37) has been observed over Kanpur and Gandhi 

College (Indo-Gangetic plain) during pre-monsoon (Srivastava et al., 2011).  

In another studies over Delhi, Srivastava et al. (2012) and Singh et al. (2010) also observed 

lower values of angstrom exponent during summer which are associated with the dust 

dominated coarse mode aerosol and higher values during post-monsoon period, indicates the 

dominance of fine mode particles associated with anthropogenic activities, biomass burning 

and firecrackers burning during the festival month.  

Over Dibrugarh, Gogoi et al. (2009) and Pathak et al. (2010) reported the highest value of 

angstrom exponent during monsoon season with peak value in July while lowest values 

during pre-monsoon with minimum value in April. 

 
Table 2. Values of angstrom exponent at different sites. 

Study area Period Angstrom exponent Reference 

  Winter 
Pre-

monsoon 
Monsoon 

Post-

monsoon 
 

Kanpur 2005-2010 1.24 0.66 0.77 1.27 Kaskaoutis et al., 2012 

Jaipur 2011  0.38-0.60   Tiwari et al., 2013 

Dibrugarh 2001-2007 1.14 085 0.87 1.12 Gogoi et al., 2009 

Ahmedabad 2002-2005 1.0 0.3 0.4 1.0 Ganguly et al., 2006 

Kullu valley 2006-2009 1.13 0.9 1.0 1.42 Guleria et al., 2012 

Delhi 2011-2013 1.02 0.51 0.89 1.03 Tiwari et al., 2016 

Varanasi 2011 1.11 0.70 0.72 1.2 Tiwari and Singh, 2013a 

Goa 2000-2002 1.48 1.14   Suresh and Desa, 2005 

Hyderabad 2009-2010 1.41 1.11 0.67 1.26 Sinha et al., 2012 

Kharagpur 2009-2010 1.33 0.71   Pani and Verma, 2013 

Nainital 2005-2008 - - - - Ram et al., 2010 

Trivandrum 2000-2003 1.0 0.85 0.32 1.20 Moorthy et al., 2007 

Patiala 2009 - - - - Sharma et al., 2012 

Anantapur 2005-2006 - - - - Kumar et al., 2009 

Delhi 2001-2012 0.97 0.49 0.66 0.93 Lodhi et al., 2013 

Kanpur 2001-2003 1.26 0.60 0.66 1.12 Singh et al., 2004 
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Over Pune (Pandithurai et al., 2007) observed monomodal distribution of angstrom 

exponent during winter with a modal value around 1.4, whereas a bimodal distribution was 

observed during pre-monsoon with modal values of ~0.5 and ~1.2. Bimodal distribution 

during pre-monsoon indicates the presence of combination of anthropogenic and dust aerosols 

due to strong winds. 

 

Single Scattering Albedo (SSA) 

 

Single scattering albedo (SSA) is another crucial parameter for measurement of aerosols 

radiative forcing which characterizes the effect of scattering and absorption properties of 

atmospheric aerosols (Manoj et al., 2020). Srivastava et al. (2011) studied aerosols properties 

over Kanpur and Gandhi College from April-June 2009 and reported average SSA values 

>0.85 over both stations. They have found relatively lower values (0.89) over Gandhi College 

than Kanpur (0.92) which indicates the more concentration of absorbing type aerosols over 

Gandhi College than Kanpur.  

Tiwari et al. (2015) reported the SSA value of 0.93±0.03 over Delhi during winter season. 

Higher values of SSA attribute to the presence of higher concentration of scattering type 

secondary aerosols, i.e. SO4
2− 

and NO3
−
 which are mainly released by coal combustion and 

vehicular emission. In another study, at the similar site Soni et al. (2010) observed average 

SSA values of 0.79±0.05 at 500nm for the study period (January 2006 to January 2007) and 

found strong variation with minimum monthly average value of 0.74±0.03 during January and 

maximum value of 0.89±0.04 for August. Higher SSA during August month may be 

associated with the dominance of water soluble aerosol particles. 

 
Table 3. Single scattering albedo at different sites. 

Study area Sampling period SSA References 

Chennai  0.77 Ramachandran, 2005 

Kanpur 2001-2003 0.92 Singh et al., 2004 

Hisar 2004 - Ram and Sarin., 2009 

Allahabad 2004 - Ram and Sarin., 2009 

Pune 2004-2009 0.83 Kumar et al., 2011 

Delhi 2008-2009 0.70 Soni et al., 2010 

Manora peak 2006-2008 0.81 Srivastava et al., 2015 

Bangalore 2001 0.78 Babu et al., 2002 

 

Single scattering albedo (SSA) also showed strong spectral dependence during different 

seasons. Soni et al. (2010) observed decrease in SSA with increase in wavelength during 

winter season (December and January) when the local anthropogenic pollutants dominating 

over Delhi while increase in SSA with increasing wavelength during dust dominated pre-

monsoon season (represented by May and June). For the dust dominated and local pollution 

dominant months, huge difference in SSA values of the order of 0.15 was observed at higher 

wavelengths (1.0 and 1.5 μm). 

SSA showed steepest decreasing trend of 0.13 as wavelength changes from 0.35 to 1.50 

μm during August month of monsoon season, which is the cleanest month in terms of black 

carbon aerosols. But during the winter season the variation is very less with minimum slope 

due to the presence of higher loading of black carbon aerosols. During other months, SSA 
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showed decrease with increase in wavelength but lies in between the extreme values of 

January and August, due to the presence of mixed type aerosols.  

Similar spectral dependence of SSA for different seasons have been reported by  Patel and 

Kumar (2015) over Dehradun, Srivastava et al. (2012) over Delhi, Sharma et al. (2012) over 

Patiala and Pandithurai et al. (2008) over Delhi. 

 

Aerosol Radiative Forcing (Arf) 

 

Direct aerosol radiative forcing can be defined as the difference in net solar flux (down minus 

up) at the surface or at the top of atmosphere (TOA), with and without aerosols. Various 

studies have been carried out to understand the effect of aerosols radiative forcing on global 

and regional climate but still there is uncertainty due to variations in source of emission and 

aerosol’s interaction with clouds (Pathak et al., 2019; Sivan and Manoj, 2019; Budhavant et 

al., 2020; Vinod, et al., 2020).  

Srivastava et al. (2015) studied ARF over Manora Peak in the Himalayan foothills for a 

period of more than two years (from February 2006 to May 2008) and found that monthly 

mean variability in the radiative forcing ranged from -2 to +14 Wm
-2

, -3 to +50 Wm
-2

 and +3 

to +65 Wm
-2

 for TOA, at the surface and within the atmosphere, respectively. Author also 

observed comparatively more pronounced atmospheric forcing (+28.4±4.9) along with large 

heating rate (0.80±0.14) during March to May 2008. This suggests the relatively higher 

concentration of absorbing aerosols (mineral dust and BC) over the station. The large 

difference between TOA and surface forcing demonstrates much higher absorption of solar 

radiation within the atmosphere, which causes heating of the atmosphere, reduction of eddy 

heat convergence and reduction in surface temperature (Ge et al., 2010).  

Singh et al. (2010) observed average forcing of the order of −67 Wm
−2

 and 4 Wm
−2

 at 

surface and TOA, which leading to atmospheric forcing of +71 Wm
−2

 for the period of (1 

January 2006- 31 January 2007) over Delhi. The maximum surface forcing of −110±20 Wm
−2

 

was found during May, whereas the minimum during August (−46±8 Wm
−2

). The maximum 

TOA forcing at 21±2 Wm
−2

 was found during June, while the minimum forcing -1.4±0.4 

Wm
−2

 was during November. Radiative forcing within atmosphere was maximum (115±19 

Wm
−2

) during June, while the minimum (46±9 Wm
−2

) was during August. Generally higher 

values of ARF were found during summer as compared to the winters due to the contribution 

of higher concentration of dust aerosols in summer. Afterwards, as the monsoon started 

during July–August the values were decreased and remained more or less constant during 

winters (after September), except for the month of October, which also had high AOD due to 

the increase in smoke and particulate matter owing to fire cracker burning during this festival 

months.  

Singh et al. (2014), estimated radiative impacts of fireworks during Diwali festival from 

October 29 to November 2005 (Diwali on November 01) over Varanasi, to investigate change 

in radiative forcing between fireworks affected and non-affected periods. They reported 

+10±1 Wm
−2 

and +12±1 Wm
−2 

TOA forcing, whereas the surface forcing was -31±7 Wm
−2

 

and -17±5 Wm
−2

 for affected and non-affected periods respectively. An additional cooling of 

about 20% at the TOA and about 45% at surface was estimated, which was caused by the 

higher loading of aerosols due to extensive burning of crackers and fireworks during that 

period. The estimated atmospheric forcing for affected and no-affected period was +41±6 and 

+29±4 Wm
−2, 

respectively, which exertes an additional atmospheric heating of ~0.23 Kday
−1

, 

during affected period. 
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Table 4. Aerosol radiative forcing at top of atmosphere (TOA) and bottom of atmosphere (BOA) 

 over different sites. 

Study Area Study period BOA TOA Reference 

Delhi 2007 -69 to -78 - Srivastava et al., 2012 

Kanpur 2001-2010 -42 to -57 -12 to -18 Kaskaoutis et al., 2013 

Dibrugarh 2010-2014 -27 -6 Pathak et al., 2015 

Ahmedabad 2006-2008 -31 to -41 -4 to -12 Ramachandran and Kedia, 2012 

Bangalore 2004-2005 -20 to -42 +2 to +5 Satheesh et al., 2010 

Hyderabad 2008-2009 -65 to -80 -17 to -23 Sinha et al., 2013 

 

Kant et al. (2015) analysed ARF over two sites (Patiala and Dehradun) of Northwestern 

India, for pre-monsoon season of 2013. For TOA forcing, they observed the magnitude of -7.8 

Wm
−2

 over Dehradun and -1.08 Wm
−2

 over Patiala. Negative magnitude of TOA forcing 

suggesting that more solar radiation are back scattered to the space than received in the 

atmosphere. The magnitude of atmospheric ARF estimated over Patiala and Dehradun was 

+54.81 Wm
−2

 and +37.34 Wm
−2

, which gives rise to a heating rate of 1.0 K day 
-1

 and 1.5 K 

day 
-1

, respectively. 
 

CONCLUSION 
 

Scientific investigations of atmospheric aerosol in India have a long history but it has 

progressed considerably in the recent time. From various studies it was observed that most of 

the Indian cities have higher aerosol load throughout the year but the properties of aerosols 

vary significantly from site to site.  

 The major contribution to the aerosol loading during winter and post-monsoon season 

was from anthropogenic sources while during summer season natural coarse mode 

particles were dominated.  

 Generally, lower values of SSA during post-monsoon and winter seasons clearly 

indicating the dominance of absorbing type aerosol such as black and brown carbon 

originated from the anthropogenic activities. 

 Higher values of SSA over Delhi and Northern India are associated with high dust 

storms and high humidity during pre-monsoon and monsoon seasons, respectively.  

 From ARF studies it was clear that aerosol contributed to the warming of atmosphere 

during winter and post-monsoon seasons. 

But still large uncertainties in understanding the role of aerosol in climatic 

phenomenon, therefore, further studies are required.  
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