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INTRODUCTION

Rapid urbanization can sharply change a city’s land cover and energy use intensity, causing a 
variety of environmental problems, most notably air pollution and the Urban Heat Island (UHI) 
effect (Singh et al., 2017; Wu et al., 2018).

In general, UHIs are caused by fast population growth and are associated with increasing air 
pollution (Owen & Peterson, 2005).

Fast urban population growth tends to cause a sharp spike in human activities, which manifests 
as considerable changes in land uses (McDonnell & MacGregor-Fors, 2016). It also increases the 
use of fossil fuels in vehicles, for cooking, and for heating or cooling buildings, which in turn 
increases the concentration of pollutants like sulfur dioxide (SO2), nitrogen dioxide (NO2), 
carbon monoxide (CO), and particulate matter (PM) in the city’s atmosphere. These primary 
pollutants are major causes of poor air quality in urban areas. (Ghanbari Ghozikali et al., 2016; 
Khaniabadi et al., 2017). Air pollution has devastating effects on human health and is therefore 
considered a major global health issue. Many believe that air pollution is currently the most 
serious environmental hazard worldwide (Franchini et al., 2016; Mannucci & Franchini., 2017). 
Air pollution can trap heat and alter the city’s radiation and energy balance. Some land covers 
can exacerbate these effects, leading to noticeable variations in the surface temperature of urban 
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areas (Sachindra et al 2015; Connors et al., 2013). For example, atmospheric aerosols, which are 
essentially airborne liquid or solid particles produced by natural processes and human activities 
(Wong et al., 2009; Ziaul & Pal, 2018), can absorb heat, causing the atmosphere to become 
warmer in certain areas (Mahapatra et al., 2018).

In general, Land Surface Temperature (LST) is influenced by a multitude of factors, which 
include vegetation (Chen et al., 2011; Yang et al., 2017; Solangi et al., 2019), land use and its 
changes (Fu & Weng, 2016; Mukherjee & Singh., 2020; Kayet et al., 2016), Wind (Zhou et al., 
2012; Xia et al., 2017; Zhou et al., 2013), altitude (Khandelwal et al., 2018; Phan et al., 2018; 
Malbéteau et al., 2017), urban geometry (Yang et al., 2015; Guo et al., 2016; Yang et al., 2021), 
and air pollution (Li et al., 2018; Zhang et al., 2016; Feng & Zou, 2019).

Temporal and spatial variations of UHI and air pollution are similar in some respects. For 
example, UHIs tend to be more intense in larger cities than in smaller ones, and air pollution 
tends to be worse in economically developed and densely populated urban areas than in other 
areas (Wu et al., 2018; Wang et al., 2021). Although air pollution and LST are both linked to urban 
land cover, the exact relationship between major air pollutants and LST (and therefore UHI) is 
not clearly understood. This relationship could be because of the higher energy consumption 
for air conditioning in the hotter areas of the city, which results in increased pollution (Weng & 
Yang, 2006).

Scientists have been collecting and analyzing records of surface air temperature for a long 
time. The world’s first set of temperature estimates was compiled in 1938 by Callender, who 
after examining records collected from across the world, concluded that carbon dioxide 
from the burning of fossil fuels has been responsible for global warming over the preceding 
50 years (Callender, 1938; Hawkins and Jones, 2013; Gillespie et al., 2021). In a 2021 study 
by Ngarambe et al. (2021), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide 
(SO2), and particulate matter (PM) were found to be positively correlated with UHI intensity 
(HUII). However, a negative correlation was observed between UHII and ozone level (O3). 
These researchers also observed a significant seasonal effect in the strength of the correlation 
between UHI and air pollution. Their results also showed that these variations ​​are affected by 
the sampling season and data collection time. In a study by Yoo et al. (2015) on the spatial and 
temporal variations of air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with four types of 
land use including residential (R), commercial (C), industrial (I) and green belt (G), the highest 
concentrations of air pollutants were found in daily, weekly and annual cycles of industrial 
areas for SO2 and PM10, commercial areas for NO2 and CO, and the green belt for O3. For all 
pollutants except O3, the concentration was higher in large cities on weekdays, but for O3, it was 
higher in suburban areas or small towns on weekends.

A study by Arvin (2018) on the relationship of UHI with air pollution in Isfahan found that 
UHI maps and pollution distribution maps were a match, showing higher temperatures in more 
polluted areas. This study found a significant correlation between pollution distribution and 
UHI, with higher correlation coefficients for days with higher pollution. In a study by Fang et 
al. (2021), they reported a positive correlation between the intensity of human activities and 
the level coupling effect, which they found to be a factor of certain spatial environment factors 
including residential, commercial, or industrial land use, the densities of road junctions and 
sub-arterial roads, type of buildings and their density, floor area ratio, and form ratio, and 
vegetation cover.

Najafzadeh et al. (2021) reported a positive correlation between air pollutants (NO2, O3, 
PM2.5, PM10) and UHI. In their study in Tabriz, Iran, Feizizadeh and Balashkeh (2013) found 
a significant relationship between land cover, LST, and PM10. In a study by Ranjbar and Bahak 
(2019) on the northeast of Tehran, they found a significant positive correlation between LST and 
carbon monoxide, nitrogen dioxide, and sulfur dioxide.

While all of the above studies have been on the subject of the correlation between UHI and 
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air pollution, their results suggest that more studies are still needed to measure the extent of this 
correlation. The findings of such studies can greatly facilitate the development of strategies to 
reduce air pollution and UHIs in urban areas, thereby improving the quality of urban air and 
micro-climate. This highlights the importance of further research into the relationship between 
LST and pollutants in urban areas with pollution and UHI problems.

MATERIALS AND METHODS

The city of Tehran is located between 51°06′-51°38′ east longitudes and 35°34′-35°51′ north 
latitudes. It is stretched from the southern slopes of the Alborz Mountains to the northern 
margins of the Dash-e-Kavir desert. As a result, the city’s altitude decreases from about 1800 
meters above sea level in the northernmost areas to 1200m in the central parts and 1050m 
in the south. With a population of about 11 million, Tehran is the most populous city in Iran 
and the 25th most populous city in the world. This city covers an area of ​​about 731 square 
kilometers (Karimi et al., 2019). In general, Tehran has poor environmental conditions and most 
importantly a major air pollution problem, which in recent years has manifested as dangerously 
high concentrations of toxic pollutants and significant environmental and climatic changes 
(Bahari et al., 2015). Figure 1 shows a map of the study area.

In this study, pollutant concentration data including SO2, NOX, NO2, NO, PM2.5, which 

 
Fig. 1.   Map of the study area 

   

Fig. 1.   Map of the study area
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were measured at the pollution measurement stations of the study area, were extracted from the 
website of the Tehran air quality control center, and were then used to prepare a distribution 
map for each pollutant by Inverse Distance Weighting (IDW) interpolation in the GIS software.

Inverse Distance Weighting (IDW) is one of the most widely used methods of interpolation. 
The main purpose of interpolation is to estimate the value of a parameter in areas where sampling 
has not been performed. This can be done by averaging the values of sampled points in the 
neighborhood of the unknown point. It is common to use the weighted average of known values 
for this purpose. Therefore, the weights assigned to the known points in the averaging operation 
could be quite important. In the IDW interpolation method, it is assumed that the effect of each 
known point is inversely proportional to the power P of its distance from the unknown point, 
which means the effect decreases as distance increases (Willmott & Matsuura, 1995).

In this study, Tehran’s LST data were extracted from Landsat 8 satellite images taken on 
01/07/2020. This satellite takes images in 11 spectral bands, of which bands 1 to 9, known as OLI 
(Operational Land Imager) bands, provide images in visible and near-infrared spectral range, 
and bands 10 and 11, known as TIRS (Thermal Infrared Sensor) bands provide images in the 
infrared range (Zante, 2016). After selecting the image, the part that was related to the study 
area was cropped and then subjected to pre-processing, including radiometric, geometric, and 
atmospheric corrections. LST estimation was then performed with the single-channel algorithm.

The specifications of the satellite image taken from the USGS website are provided in Table 1.
To convert raw images to interpretable LST data, it is necessary to perform some 

preprocessing and processing on these images by special digital image processing software. This 
includes obtaining spectral radiance, reflection coefficient, brightness temperature, land surface 
emissivity, and fractional vegetation cover.

LST estimation was performed using the generalized single-channel algorithm of Jimenez-
Muñoz & Sobrino (2009).

This algorithm is one of the most accurate methods available for estimating LST. One of the 
important features of this method is the elimination of atmospheric effects. Also, since this 
algorithm uses both multispectral and thermal sensor data to estimate LST, it does not require 
detailed information about the atmospheric profile of satellite data (Wang et al., 1996).

 In this algorithm, the following equation is used for all Landsat sensor data.

( )1 2 3
1

S senT Lγ ψ ψ ψ δ
ε
 = + + +  

 								        (1)

In this equation, Ts is the land surface temperature, Ԑ is the land surface emissivity, and Lsen 
is the at-sensor radiance. The parameters γ and δ are obtained from Equation 2.
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where Tsen is the at-sensor brightness temperature, bγ is 1324 for Landsat 8, and ψ1, ψ2, and 
ψ3 are the atmospheric functions, which, for Landsat 8, are obtained as follows:

Table 1. Specifications of the satellite image used in the study 
 

Date Path/Row Sensor Satellite 
01/07/2020 35/164 TIRS Landsat 

 
  

Table 1. Specifications of the satellite image used in the study
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cij coefficients must be obtained by simulation, and W is the atmospheric water vapor.
Multivariate linear regression was used to investigate the relationship between LST and 

each pollutant. This method is commonly used to analyze how changes in one, two, or more 
independent variables affect the changes of an independent variable. In this analysis, the goal is 
to determine the simultaneous effect of several independent variables on a target variable. The 
general form of this model is defined as follows.

0 1
 p

k kk
y x εβ β +=
= +∑  									�         (4)

In Equation (4), y is the dependent variable, β0 is the intercept, βk denotes the coefficients of 
the regression model, xk denotes independent variables, ɛ is the curve fitting error, and k is the 
number of independent variables.

In this study, regression coefficients were obtained using the least-squares method, as it is the 
most widely used method for fitting a straight regression line to observations. This method finds 
the best fit for a set of observed points by minimizing the sum of squares of vertical offsets of 
these points from the regression line (Ganesh et al., 2010).

The correlation coefficient (r) varies from -1 to 1. r=1 indicates a direct or positive relationship 
between the two variables, meaning that when one variable increases (decreases), the other 
also increases (decreases). r=-1 indicates an inverse or negative relationship between the two 
variables, meaning that when one variable increases, the other variable decreases, and vice versa. 
r=0 indicates that there is no linear relationship between the two variables.

The coefficient of determination (R2) is the statistical measure of how close the data are to the 
fitted regression line. This coefficient indicates what percentage of variability of the dependent 
variable is explained by the independent variable, or in other words, how much of the variations 
in the dependent variable is affected by the relevant independent variable and how much of it is 
related to other factors. 

Another parameter for measuring the correlation between independent and dependent 
variables is the Pearson coefficient. This coefficient is calculated by the following equation 
(Equation 5).

( )
2 2

X x (y y)
R

(x x) (y y)

∑ − −
=

− −∑ −
										        

� (5)

 where X and Y are the values ​​of the two variables and x  and  Y are their averages.
There are several criteria for evaluating and validating statistical methods like linear 

regression. In this study, RMSE, MAE, and MBE were used for this purpose. These criteria are 
defined in Equations 6 to 8.

Root Mean Square Error (RMSE) is commonly used as a measure of the difference between 
observations and model predictions ​​. RMSE is sensitive to both random errors and systematic 
errors. This measure is calculated by Equation 6:
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where n is equal to the total number of data, Predict is the value predicted by the model, and 
Ground is the observed value in the ground data. A lower RMSE indicates the better accuracy 
of the model.

Mean Absolute Error (MAE) is a widely used measure of average error. MAE can be obtained 
from Equation 7 (Sadidi et al., 2017).

 
1

1 | |
n

i
MAE pridict Ground

n =

= −∑ 								�         (7)

where X and Y are the values ​​of the two variables and x  and  Y are their averages.
 ​​For Mean Bias Error (MBE), positive values indicate that ​​ model predictions are overestimates 

(higher than the actual values) ​​and negative values ​​indicate that they are underestimates (lower 
than the actual values) ​​(Nosrati et al., 2007). This measure is given by Equation 8.
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i
n

=
= −∑  							�        (8)

After determining the relationship between pollutant distribution and LST by regression, 
fuzzy OR, AND, SUM, PRODUCT, and GAMMA operators were used to combine pollutant 
distribution maps into multi-pollutant overlay (MPO) maps based on a degree of membership 
defined for each pollutant layer. This process was carried out in the ARC GIS software.

The output of the AND operator is the lowest value of the standardized fit measure, which 
means it selects the most appropriate fit. The output of the OR operator is the highest value of 
the standardized fit measure, which means it ignores low membership values.

The Fuzzy SUM and PRODUCT operators are the fuzzy versions of algebraic summation and 
multiplication operators. These operators have maximum increasing and maximum decreasing 
tendencies, and typically cannot provide a reliable result alone. These operators are used in the 
fuzzy GAMMA operator.

 The GAMMA operator combines the PRODUCT and SUM operators based on a weight 
called γ, which ranged from 0 to 1. When γ=1, the GAMMA operator is the same as algebraic 
summation, and when γ=0, this operator functions as algebraic multiplication (Atkinsona et al., 
2005).

RESULTS AND DESCUTION

The present study investigated the temporal and spatial relationship between UHI and 
air pollutants in Tehran using Landsat 8 satellite images by analyzing the linear regression 
correlation between LST and pollutant concentrations. The LST map of Tehran produced using 
the single-channel method based on the images taken on 01/07/2020 is presented in Figure 2.

As the LST map shows, the northern parts of the city tend to have lower LSTs than other parts 
and the UHI effect tends to increase from north to south. The city’s western expanses also have 
a significantly higher number of UHIs than the middle and eastern parts. The western parts of 
the city have no notable urban cool islands except Chitgar Lake but contain several major UHIs. 
Table 2 shows the area of ​​each LST class as a percentage of the city’s total area.

As Table 2 shows, the LST class of <35°C constitutes slightly over 1% of the city’s area, which 
is a very small percentage. The LST class of 35-40°C makes up a much larger portion of the city 
(over 35%). However, the largest LST class in terms of area is 40-45°C, which constitutes about 
40% of the city’s area. Temperatures of 40-45°C are uncomfortably hot and are unbearable for 
many people including the elderly, children, and people with certain diseases. The two hottest 
LST classes (i.e. >45°C), which are problematic and unbearable for many people, span over 
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almost a quarter of the city.
 In this study, air pollution was investigated in terms of NOX, NO2, NO, PM2.5 and SO2. 

Figure 3 shows the NOX, NO2, NO, PM2.5, and SO2 maps of Tehran produced by IDW 
interpolation.

In Figure 3, the pollution maps of the study area are plotted separately for each pollutant. 

 
 
 

Fig. 2. LST map of Tehran 
   

Table 2. Percentage area of  LST classes in Tehran 
 

>5045-50 40-4535-4029-35 LST class (°C) 

2.78% 20.47% 40.42% 35.32% 1.01% 
Percentage of 

city’s total area 
 
  

Fig. 2. LST map of Tehran

Table 2. Percentage area of ​​ LST classes in Tehran

 
 
 

Fig. 3. Interpolated pollution map of Tehran A) NOX, B) NO2, C) NO, D) PM2.5, E) SO2 
   

Fig. 3. Interpolated pollution map of Tehran A) NOX, B) NO2, C) NO, D) PM2.5, E) SO2
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In these maps, the level of pollution is indicated by a continuous spectrum of colors from 
dark brown to pale purple and white. Brown indicates high concentrations of pollutants and 
purple and white indicates low concentrations of pollutants in the environment. As Figure 
3-A shows, NOX concentrations are lowest in the northern, northeastern, and southeastern 
parts of the city and highest in its southern, central and southwestern parts. In Figure 3-B, 
it can be seen that NO2 concentrations are highest in the northern and southwestern parts 
and lowest in the southern, northeastern and southeastern parts. NO concentrations are lowest 
in the northern and northeastern sections and parts of the center, southwest and southeast, 
and highest in the southern expanses and part of the southwest ​​(Figure 3-C). As Figure 3-D 
shows, PM2.5 concentrations are highest in the northern and central parts of the city and lowest 
in the southern, southwestern, and northwestern parts. In Figure 3-E, one can see that SO2 
concentrations are highest in very small areas in the central and southwestern parts of the city 
and in much larger areas in the northwestern parts. The lowest SO2 concentrations are in the 
northern and southeastern parts of the city.

According to the maps illustrated in Figure 3, the northern and northeastern parts of the 
city have the lowest levels of pollution in terms of almost all indices, but especially NO, PM2.5 
and SO2. As these results indicate, the northern parts of the city have cleaner air than other 
parts. Overall, the analysis of the maps of Figure 3 suggests that the pollution situation is worst 
(highest pollutant concentrations) in the western parts of Tehran, followed by the southern parts 
and central parts.

Figure 4 and Table 3 show the relationship between LST and air pollution indices in Tehran 

 
 
 
 

Fig. 4.  Relationship between LST and pollution indices A) NOX, B) NO2, C) NO, D) PM2.5, E) SO2 
   

Fig. 4.  Relationship between LST and pollution indices A) NOX, B) NO2, C) NO, D) PM2.5, E) SO2

Table 3. Correlation results for the relationship between pollutants and LST and the corresponding error values 
 

Measure  
Pollutant  

NOX  2NO  NO  2.5PM  SO2
 

R 22.47  17.49  14.62  37.54  45.99  
2R  5.05  2.94  2.14  14.09  20.89 

RMSE  13.12  3.23  3.23  3.03  7.35  
MAE  12.06  2.6  2.67  2.44  6.68  
MBE  -0.04  0.0006  -0.0004  0.0003  0.02  

 

Table 3. Correlation results for the relationship between pollutants and LST and the corresponding error values
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based on the analysis of the data.
As shown in Figure 4, the highest coefficients of determination (R2) for the relationship 

between pollution indices and LST were obtained for SO2 (R2=20.89) and PM2.5 (R2=14.09), 
and the lowest were obtained for NO (R2=2.14) and NO2 (R2=2.94). In general, it can be 
concluded that among the pollutants, SO2 has the highest correlation with LST. Table 3 shows 
the relationship between pollution indices and LST based on correlation measures along with 
the corresponding error values.

As Table 3 shows, SO2 has better correlation values than other pollutants (its Pearson 
coefficient is about 46 and its coefficient of determination is about 20.9), but PM2.5 has better 
error rates than other pollutants

The multi-pollutant overlay maps produced by overlaying the pollutant distribution maps by 
different fuzzy operators are illustrated in Figure 5.

 From the maps produced by the five operators (AND, OR, SUM, PRODUCT, and 
GAMMA0.5), the one obtained from the AND operator was selected for use in the next stage. 
This map was selected because of the greater strictness and capability of the AND operator in 
differentiating the most and least polluted areas. Using this operator, the study area was classified 
into five zones: very high pollution, high pollution, moderate pollution, low pollution, and very 
low pollution. The multi-pollutant overlay map produced with this operator is shown in Figure 
6.

 For easier comparison of LST and pollution situation of the 22 districts of Tehran, the 
distribution of pollution classes and the average LST in each of these 22 districts are plotted in 
Figure 7 and Figure 8, respectively.

By comparing the multi-pollutant overlay map and the LST map, we can see that District 21, 
which has the highest average LST (44.87°C), also has the highest pollution, as 98.02% of this 
district falls in the “very high pollution” class. The second and third most polluted districts are 
District 18 and District 19, with respectively 91.24% and with 87.11% of their area falling in the 
“very high pollution” class. These two districts have an average LST of 42.91°C and 43.37°C, 
respectively, which are quite high. According to a study by Hereher et al. (2021) on Shubra 

 
 
 

Fig. 5.   Multi-pollutant overlay maps produced by fuzzy operators: a) AND b) Gamma0.5 c) Or d) 
Product e) Sum 

   

Fig. 5.   Multi-pollutant overlay maps produced by fuzzy operators: a) AND b) Gamma0.5 c) Or d) Product e) Sum



Nasehi et al.10

 
 

Fig. 6.   Multi pollutant overlay map of Tehran 
   

Fig. 6.   Multi pollutant overlay map of Tehran

 
 
 

Fig. 7.   Distribution of pollution classes in the 22 districts of Tehran 
   

Fig. 7.   Distribution of pollution classes in the 22 districts of Tehran

 
 

Fig. 8.  Average LST in the 22 districts of Tehran 
 

Fig. 8.  Average LST in the 22 districts of Tehran
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al-Khaymah (a northern suburb of Cairo), high concentrations of SO2 in urban areas could 
be due to the extensive use of diesel trucks in the construction of new asphalt roads as well as 
industrial facilities, chemical and petrochemical plants, and transportation. In the present study, 
the highest SO2 concentrations were observed in the western and southwestern parts of the city, 
and particularly District 21, which is a mostly industrial area.

The study of Hereher et al. (2021) also showed high NO2 concentrations near Cairo Airport. 
Consistent with this finding, in the present study, the highest NO2 concentration was observed 
near Mehrabad Airport in District 9, which also has the second-highest LST after District 21.

In a study by Zhang et al. (2020) in China, they attributed the temporal-spatial variations 
of PM2.5 concentration to the presence of industrial centers, including steel factories, and 
stated that these industries are major fossil fuel consumers and inevitably emit huge amounts 
of greenhouse gases. For Tehran, the main reasons for this pollution could be the presence of 
fossil fuel burning industries as well as increasing urbanization and transportation. Industrial 
sources are likely to be the main cause of high PM2.5 concentration in Districts 18, 19, and 21, 
where there is a high concentration of such industries. The high concentration of PM2.5 is one 
of the main causes of the extensive UHI effect in the western, southern, and southwestern parts 
of Tehran. A study by Matkan et al. (2009) in Tehran metropolis also concluded that industrial 
activities are the most important source of PM pollution in this area. In the present study, a 
correlation was observed between LST and the concentration of particulate matter smaller 
than 2.5 microns, which, according to Matkan et al. (2009) is mainly produced by industrial 
sites in these districts. The PM2.5 distribution map of Tehran (Figure 3) also shows the high 
concentration of this pollutant in these districts.

In a study by Etabi et al. (2007), they stated that the main cause of pollution in District 22 is 
particulate matter, which is consistent with our findings, (Figure 3). In the present study, 85% 
of this district fell in the “very high pollution” class and it had an average LST of over 43.31°C, 
which was the fourth-highest among all districts.

A study by Wang et al. (2021) showed that UHI and air pollution are influenced by factors like 
geographical location, altitude, and economic development level. These researchers observed 
lower air pollution in areas located at higher altitudes and also in coastal and near-water areas 
compared to residential areas. The present study also observed higher LST in the southern parts 
of Tehran (which have lower altitudes) than in the northern parts (Figure 8). A major reason for 
this difference is the altitude difference between the city’s northern parts, which are positioned 
on foothills, and its southern parts, which are mostly situated on plains (in Tehran, altitude 
generally decreases from north to south). Topographical differences could also be a major cause 
of LST and pollution variations.

The results showed a noticeable drop in LST near Chitgar Lake in the west of Tehran (Figure 
2), which is consistent with the findings of Wang et al. (2021) in China.

The present study also found a significant correlation between pollutants and LST, which is 
in good agreement with the results of Ranjbar and Bahak (2019) and Ngarambe et al. (2021).

CONCLUTION

The subject of this study was the relationship between air pollution and LST in Tehran. To 
investigate this relationship, the LST map of Tehran was prepared from Landsat 8 images taken 
on 01/07/2020 using the single-channel method. LST analysis results showed that urban cool 
islands (<35°C) make up a very small portion (about 1%) of the city’s area, and over 23% of the 
entire city has LSTs above 45°C, which could be dangerous for many of the residents.

It is indeed important to establish whether there is a significant relationship between air 
pollution and LST, because if such a relationship really exists, it will mean that the adverse 
impacts of high air temperatures can be alleviated by controlling air pollution. In this study, the 
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air pollution situation was favorable in the city’s northern parts and to some extent northeastern 
part, but was unfavorable in most other parts, especially in the city’s western expanses. The next 
most polluted sections of the city were its central and southern parts. The main causes of high 
pollution in the western parts of Tehran include the presence of heavy industries and a major 
airport in these areas.

The results of this study showed a direct relationship between air pollutants and LST, meaning 
that they increase and decrease with each other. This relationship can even be visually observed 
in the produced pollutant and LST maps, most notably in that the city’s northern parts, which 
have the lowest LST, also have the lowest concentrations of pollutants and on the contrary of 
the city’s western parts have the highest LST as well as the highest concentrations of pollutants. 
Among the five pollutants examined as pollution indices, SO2 and PM2.5 had the highest 
correlation with LST. It should be noted that although SO2 had the highest correlation values, it 
also had the second-highest error values after NOX. This shows that while SO2 can predict air 
temperature with generally high accuracy, the error of predictions in a few areas will be quite 
high. In other words, the standard deviation of SO2-based temperature predictions will be high. 
While PM2.5 has a lower correlation with LST than SO2, it has the lowest error rates among all 
indices. This means that while PM2.5 may not be as accurate in predicting temperature, it does 
offer certainty that predictions will be equally accurate over the entire city area.

Comparing the LST map of Tehran with the pollutant concentration maps showed that in all 
maps, the situation generally gets worse (LST increases and pollutant concentration increases) 
as we move from north to south. The city’s western and southern parts, which have high 
concentrations of most pollutants, also have the highest temperatures, and the city’s northern 
parts, where pollutant concentrations are lower, are also colder than other parts.

For future studies, the authors recommend examining the relationship between UHI and 
air pollution in chronological and seasonal order, as there is a general consensus that pollutant 
concentrations tend to be higher in spring and winter than in other seasons.
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