The Rhizospheric Soil of Sparganium erectum L. Plant: A new Source of Efficient Bacteria for Azo Dye Decolorization

Document Type : Original Research Paper

Authors

1 Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Irrigation and Reclamation Engineering Department, Faculty of Agriculture Engineering and Technology, University of Tehran, Karaj, Iran

10.22059/poll.2022.342901.1478

Abstract

The purpose of our study was to identify the native bacteria with the ability to degrade azo dyes from the rhizosphere of Sparganium erectum L., and Typha latifolia L. plants that were grown on a drain of a textile mill. Eight and one strain with decolorization ability of Cibacron Brilliant Red EB and Terasil Red 3BL-01 were isolated from the saline rhizosphere of Sparganium erectum L. and latifolia L. plant respectively. Results showed that the bacteria isolated from the rhizosphere of Sparganium erectum L. are more capable of decolorizing azo dyes. Based on the 16S rRNA sequencing, selected strains were identified as follows: Enterobacter ludwigii strain SNP3 (OL719291), Rhodococcus fascians strain SNP5 (OL759129), Pseudomonas aeruginosa strain SNP10 (OL759126), and Bacillus safensis strain SNP13 (OL759127). The results of azo dyes biodegradation tests revealed that strains SNP10, SNP3, and SNP5 were more capable of decolorizing 94-97%, 72.53-73.8, 72.53%, and 71.13-73.5% of Cibacron Brilliant Red EB at concentration 10-20 mg/L within 72 h, respectively. Besides, strain SNP13 was the fastest strain in decolorization of Cibacron Brilliant Red EB with 68% and 59% decolorization activity at 10 and 20 mg/L respectively (24 h). Only strains SNP3 and SNP13 could decolorize 83% and 77% of Terasil Red 3BL-01 (30 mg/L), respectively. For the first time, our research findings illustrated that indigenous rhizospheric bacterial strains isolated from Sparganium erectum L. plants have the potential to apply as an azo dye breakdown tool in textile effluent treatment or other ecosystems.

Keywords


Afrin, S., Shuvo, H.R., Sultana, B., Islam, F., Rus, A.A., Begum, S. and Hussain, M.N. (2021). The degradation of textile industry dyes using the effective bacterial consortium. Heliyon., 7(e08102), 1-10.
Akbarzadeh, A., Laghai, H.-A., Monavari, M., Nezami, S. A., Shokrzadeh, M. and Saeedi Saravi, S. S. (2008). Survey and determination of Anzali Wetland trophic state through geographic information systems (GIS). Toxicol. Environ. Chem., 90 (6), 1055-1062.
Asad, S., Amoozegar, M.A., Pourbabaee, A.A., Sarbolouki, M.N. and Dastgheib, S.M.M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour. Technol., 98 (11), 2082-2088.
Baena-Baldiris, D., Robledo, A.M. and Baldiris-Avila, R. (2020). Franconibacter sp., 1MS: A New Strain in Decolorization and Degradation of Azo Dyes Ponceau S Red and Methyl Orange. ACS Omega., 5, 28146−28157.
Barathi, S., Aruljothi, K.N., Karthikc, C. and Padikasan, I.A. (2020). Optimization for enhanced eco-friendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. Biotechnol Rep., 28 (e00522), 1-10.
Bharagava, R. N., Mani, S., Mulla, S. I. and Saratale, G. D. (2018). Degradation and decolorization potential of a ligninolytic enzyme-producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol. Environ. Saf., 156, 166-175.
Carter, M.R. and Gregorich, E.G. (2008). Soil Sampling and Methods of Analysis. 2nd Edition, CRC Press, Taylor & Francis Group, Boca Raton.
Chandra, R (Ed.) (2016). Environmental waste management. CRC Press.
Chaturvedi, S., Chandra, R. and Raib, V. (2006). Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol. Eng., 27, 202–207.
Das, P., Banerjee, P., Zaman, A. and Bhattacharya, P. (2015). Biodegradation of two Azo dyes using Dietzia sp. PD1: process optimization using response surface methodology and artificial neural network. Desalination. Water. Treat., 57, 7293–7301.
Fu, L., Bai, Y., Lub, Y., Ding, J., Zhou, D. and Zeng, R.J. (2019). Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. J. Hazard. Mater., 364, 264–271.
Gomaa, E.Z. (2016). Biodegradation and Detoxification of Azo Dyes by Some Bacterial Strains. Microbiol. journal., 6, 15-24.
Haque, M.M., Haque, A., Mosharaf, K. and Marcus, P.K. (2021). Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi. J. Biol. Sci., 28, 793–804.
Hassan, M. M. and Carr, C. M. (2018). A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere., 209 (1), 201-219.
Hayat, H., Mahmood, Q. and Pervez, A. (2015). Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Sep. Purif. Technol., 154, 149-153.
Holkar, A.B., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. and Pandit, A.B. (2016).  A critical review on textile wastewater treatments: Possible Approaches. J. Environ. Manage., 182, 351-366.
Holt, G. J., Krieg, N.R. and Sneath, P.H.A. (1994). Gram negative aerobic/ microaerophilic rods and cocci. In: Bergey’s manual of determinative bacteriology, 9th edition. Williams and Wilkins, Lippincott, Philadelphia.
Hu, T.L. (1994). Decolorization of reactive azo dyes by transformation with Pseudomonas luteola. Bioresour. Technol., 49, 47–51.
Imran, M., Crowley, D.E., Khalid, A., Hussain, S., Mumtaz, M.W. and Arshad, M. (2015). Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Biotechnol., 14, 73–92.
Ito, T., Adachi, Y., Yamanashi, Y. and Shimada, Y. (2016). Long-term natural remediation process in textile dye polluted river sediment driven by bacterial community changes. Water Res., 100, 458-465.
Jang, M.S., Jung, B.G., Sung, N.C. and Lee, Y.C. (2007). Decolorization of textile plant effluent by Citrobacter sp. strain KCTC 18061P. J. Gen. Appl. Microbiol., 53, 339–343.
Juarez-Ramirez, R., Velázquez-García, N., Ruiz-Ordaz, J., Galíndez-Mayer, O. and Ramos, M. (2012). Degradation kinetics of 4-amino naphthalene-1-sulfonic acid by a biofilm-forming bacterial consortium under carbon and nitrogen limitations. J. Ind. Microbiol. Biotechnol., 39 (8), 1169-1177.
Junnarkar, N., Murty, D.S., Bhatt, N.S. and Madamwar, D. (2006). Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World J. Microbiol. Biotechnol., 22, 163–168.
Kazemi, A., Bakhtiari, A.R., Kheirabadi, N., Barani, H. and Haidari, B. (2012). Distribution patterns of metals contamination in sediments based on type regional development on the intertidal coastal zones of the Persian Gulf, Iran. Bull. Environ. Contam. Toxicol., 88 (1), 100-3.
Khalid, A., Arshad, M. and Crowley, D. E. (2008). Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl. Microbiol. Biotechnol., 78 (2), 361-369.
Khan, S., & Malik, A. (2018). Toxicity evaluation of textile effluent sand role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. Res., 25 (5), 4446-4458.
Khatri, J., Nidheesh, P. V., Singh, T. A. and Kumar, M. S. (2018). Advanced oxidation processes based on zero-valent aluminum for treating textile wastewater. Chem. Eng. J., 348, 67-73.
Knapp, J.S. and Newby, P.S. (1995). The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore. Water Res., 29, 1807–1809.
Krishnamoorthy, R., Arul Jose, P., Ranjith, M., Anandham, R., Sugany, K., Prabhakaran, J., Thiyageshwari, S., Johnson, J., Gopal, N.O. and Kumutha, K. (2018). Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. J. Environ. Chem. Eng., 6, 588–595.
Lelis, B., Favaro-Polonio, C.Z., Pamphile, J. A. and Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., 3, 275-290.
Mane, U. V., Gurav, P. N., Deshmukh, A. M. and Govindwar, S. P. (2008). Degradation of textile dye reactive navy – blue Rx (Reactive blue–59) by an isolated Actinomycete Streptomyces krainskii SUK – 5. Malays. J. Microbiol., 4 (2), 1-5.
Mani, P., Fidal, V.T., Bowman, K., Breheny, M., Chandra, T.S., Keshavarz, T. and Kyazze, G. (2019). Degradation of Azo Dye (Acid Orange 7) in a Microbial Fuel Cell: Comparison Between Anodic Microbial-Mediated Reduction and Cathodic Laccase-Mediated Oxidation. Front. Energy Res., 7, 101.
Miran, W., Jang, J., Nawaz, M., Shahzad, A. and Lee, D. S. (2018). Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. J. Hazard. Mater., 352, 70-79.
Mirzajani, A. R., Khodaparastsharifi, H., Babaei, H., Abedini, A. and Dadai Ghandi, A. (2010). Eutrophication trend of Anzali Wetland based on 1992-2002 data. J. Environ. Stud., 35 (52), 19-21.
Moosvi, S., Keharia, H. and Madamwar, D. (2005). Decolourization of Textile Dye Reactive Violet 5 by a Newly Isolated Bacterial Consortium RVM 11.1. World J. Microbiol. Biotechnol., 21, 667-672. 
Mousazadeh, R., Ghaffarzadeh, H., Nouri, J., Gharagozlou, A. and Farahpour, M. (2015). Land-use change detection and impact assessment in Anzali international coastal wetland using multi-temporal satellite images. Environ. Monit. Assess., 187, 776.
Nachiyar, C. V. and Rajkumar, G. S. (2003). Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aerug-inosa. World J. Microbiol. Biotechnol., 19 (6), 609-614.
Newman, M. C. (2015). Fundamentals of ecotoxicology: The science of pollution. Boca Raton: CRC Press.
Nho, S. W., Cui, X., Kweon, O., Jin, J., Chen, H., Moon, M. S., Kim, S. J. and Cerniglia, C. E. (2021). Phylogenetically diverse bacteria isolated from tattoo inks, an azo dye-rich environment, decolorize a wide range of azo dyes. Ann. microbiol., 71 (1), 35. 
Ong, S., Uchiyama, K., Inadama, D., Ishida, Y. and Yamagiwa, K. (2010). Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresour. Technol., 101, 9049–9057.
Orts, F., del Río, A. I., Molina, J., Bonastre, J. and Cases, F. (2018). Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem., 808, 387--394.
Parry, J.M., Turnbull, P.C.B. and Gibson, J.R. (1988). A color atlas of Bacillus species. Wolfe Medical Publications Ltd.
Pirsaheb, M., Khamutian, R. and Pourhaghighat, S. (2015). Review of Heavy Metal Concentrations in Iranian Water Resources. Int. J. Health Life Sci., 1, 35-45.
Pourbabaee, A.A., Malekzadeh, F., Sarbolouki, MN. and Najafi, F. (2006). Aerobic Decolorization and Detoxification of a Disperse Dye in Textile Effluent by a New Isolate of Bacillus sp. Biotechnol. Bioeng., 93 (4), 631-5.
Pourbabaee, A.A., Malekzadeh, F., Sarbolouki, MN. and Najafi, F. (2005). Decolorization of Methyl Orange (As a Model Azo Dye) by the Newly Discovered Bacillus sp. Iran. J. Chem. Chem. Eng., 24 (3), 1-7.
Pourbabaee, A.A., Ramezani, S. and Javaheri, D. H. (2013). Biodegradation of Malachite Green by Klebsiella Terrigenaptcc 1650: The Critical Parameters Were Optimized Using Taguchi Optimization Method. J. Bioremed. Biodeg., 4, 175.
Roy, U., Sengupta, S., Das, P., Bhowal, A. and Datta, S. (2018). Integral approach of sorption coupled with biodegradation for treatment of azo dye using Pseudomonas sp.: batch, toxicity, and artificial neural network. 3 Biotech., 8, 192.
Saeedi, M. and Jamshidi-Zanjani, A. (2015). Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol. Indic., 58, 235–243.
Saratale, G.D., Kalme, S.D. and Govindwar, S.P. (2006). Decolorization of textile dyes by Aspergillus ochraceus (NCIM-1146). Indian. J. Biotechnol., 5, 407–410.
Saratale, R.G., Saratale, G.D., Kalyani, D.C., Chang, J.S. and Govindwar, S.P. (2009). Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour. Technol., 100, 2493–2500.
Saratale, R. G., Saratale, G. D., Chang, J. S. and Govindwar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan. Inst. Chem. Eng., 42 (1), 138-157.
Sarkar, S., Echeverría-Vega, A., Banerjee, A. and Bandopadhyay, R. (2021). Decolourisation and Biodegradation of Textile Di-azo Dye Congo Red by Chryseobacterium geocarposphaerae DD3. Sustainability., 13 (10850), 1-15.
Shafqat, M., Khalid, A., Mahmood, T., Siddique, M.T.,  Han, J.I. and Habteselassie, M.Y. (2017). Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. J. Chem. Technol. Biotechnol., 92, 2760-2768.
Shahid, M., Ahmed, B. and Khan, M. S. (2018). Evaluation of microbiological management strategy of herbicide toxicity to green gram plants. Biocatal. Agric. Biotechnol., 14, 96-108.
Shariati, S., Pourbabaee, A.A., Alikhani, H.A. and Rezaei, K. (2021).  Biodegradation of DEHP by a new native consortium An6 (Gordonia sp. and Pseudomonas sp.) adapted with phthalates, isolated from a natural strongly polluted wetland. Environ. Technol. Innov., 24 (101936), 1-11.
Singh, R.L., Singh, P.K. and Singh, R.P. (2015). Enzymatic decolorization and degradation of azo dyes: a review. Int. Biodeterior. Biodegradation., 104, 21-31.
Somasegaran, P. and Hoben, H.J. (1994). Hand Book for Rhizobia: Methods in Legume Rhizobium Technology. Springer-Verlag, Heidelberg, Germany, 450.
Telke, A. A., Kadam, A. A. and Govindwar, S. P. (2015). Bacterial enzymes and their role in decolorization of azo dyes. In S. N.Singh (Ed.), Microbial degradation of synthetic dyes in wastewaters (pp. 149-168). Cham: Springer.
Tohamy, R.A., Sun, J., Fareed, M.F., Kenawy, E.R. and Ali, S.S. (2019). Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci. Rep., 10, 12370.
Tripathi, A. and Srivastava, S.K. (2011). Ecofriendly treatment of azo dyes: bio-decolorization using bacterial strains. Int. J. Biosci. Biochem. Bioinf., 1, 37–40.
Valizadeh, H. and Parvin, M.R. (2014). Middle East’s Environmental Contamination and Responsibilities of the Islamic Republic of Iran Regarding Compensation of Environmental Damages (Haze and Water Contaminations). Eur. Online J. Nat. Soc. Sci., 3, 186-199.
Vijayalakshmidevi, S. R. and Muthukumar, K. (2015). Improved biodegradation of textile dye effluent by coculture. Ecotoxicol. Environ. Saf., 114, 23-30.
Wadhwani, S. A., Shedbalkar, U. U., Nadhe, S., Singh, R. and Chopade, B. A. (2018). Decolorization of textile dyes by combination of gold nanocatalysts obtained from Acinetobacter sp.SW30 and NaBH4. Environ. Technol. Innov., 9, 186-197.
Watharkar, A.D., Rane, N.R., Patil, S.M., Khandare, R. V., Jadhav, J.P. (2013). Enhanced phytotransformation of Navy Blue RX dye by Petunia grandiflora Juss. with augmentation of rhizospheric Bacillus pumilus strain PgJ and subsequent toxicity analysis. Bioresour. Technol., 142, 246–254.
Yu, Y., Zhang, Y., Zhao, N., Guo, J., Xu, W., Ma, M. and Li, X. (2020). Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Suaeda Salsa Revealed by 16S rRNA Genes. Int. J. Environ. Res. Public Health., 17 (5), 1471.