Examination of Medicinal Plants for Radionuclide Absorption and their Health Implications

Document Type : Original Research Paper

Authors

1 Department of Mathematical & Physical Sciences, Glorious Vision University, Ogwa,Edo State, Nigeria

2 Department of Chemical Sciences, Glorious Vision University, Ogwa, Edo State, Nigeria

3 Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria

4 Department of Pharmacognosy, Igbinedion University, Okada, Edo State, Nigeria

5 Department of Physics, Redeemer’s University, Ede, Osun State, Nigeria

6 Department of Integrated Science, Adeyemi Federal University of Education, Ondo, Ondo State, Nigeria

7 Department of Works & Physical Planning, Glorious Vision University, Ogwa, Edo State Nigeria

Abstract

This study examined the concentrations of 40K, 238U, and 232Th radionuclides and evaluated the possible radiological health risks to medicinal plants found in Ewu, Edo State, Nigeria, using a NaI(Tl) gamma spectrometer. The six selected medicinal plants were Mangifera indica, Dacryodes edulis, Terminalia catappa, Cymbopogon citratus, Anacardium occidentale, and Persea Americana. The results showed that the activity concentrations for 40K ranged from 146.59 ± 4.81 in Persea americana to 296.08 3.42 Bq/kg in Cymbopogon citratus, with a mean of 209.43 ± 5.14 Bq/kg; 238U ranged from 2.25 ± 0.06 to 5.57 ± 0.15 Bq/kg, with a mean of 4.73 ± 0.15 Bq/kg; and 232Th varied from 4.50 ± 0.35 to 12.07 ± 0.57 Bq/kg, with a mean of 8.00 ± 0.40 Bq/kg. The maximum and minimum activity concentrations of both 238U and 232Th were found in Mangifera indica and Cymbopogon citratus, respectively. The calculated average committed effective dose ECED was 0.130 μSv/yr and the excess lifetime cancer risk (ELCR) has a mean of 0.00913 (×〖10〗^(-3)). The radiological hazard assessment of the investigated medicinal plants was well within the internationally recommended safe limits of 0.3 mSv/yr and >〖10〗^(-4) for ECED and ELCR respectively. 232Th contributes 54.91% of the total ECED, while 238U contributes the least to 6.35%. 232Th exhibits a very strong, positive, and significant relationship with ECED and the ELCR, and it contributes largely to the ECED and ELCR due to ingestion of the examined herbal plant. Therefore, these medicinal plants are radiologically safe for human consumption.

Keywords

Main Subjects


Abojassim, A. A., & Lawi, D. J. (2018). Alpha particles emissions in some samples of medical drugs (capsule) derived from medical plants in Iraq. Plant Archives, 18 (1), 1137–1143.
Adedokun, M. B., Aweda, M. A., Maleka, P. P., Obed,R. I., Ogungbemi, K. I., & Ibitoye, Z. A. (2019). Natural radioactivity contents in commonly consumed leafy vegetables cultivated through surface water irrigation in Lagos state, Nigeria. Journal of Radiation Research and Applied Sciences, 12(1) 147-156. https://doi.org/10.1080/16878507.2019.1618084
Adodo, F. A. (2022). Paxherbals – How an integral enterprise-in-community in Nigeria is releasing Africa’s natural, cultural, technological and economic regeneration with lessons for the global world. 17th IRDO International Conference, Socially Responsible Society Challenges 2022, 1–9.
Akhter, P., Rahman, K., Orfi, S. D., & Ahmad, N (2007). Radiological impact of dietary intakes of naturally occurring radionuclides on Pakistani adults. Food Chem. Toxicol. 45(2), 272-277. https://doi.org/10.1016/j.fct.2006.08.006 
Akinbode A (1983). The Geography of Ekpoma. Ekpoma: Bendel State University Press.
Alade, A. A., Igwe, C. O., & Adekunle, T. A. (2020). Natural radioactivity levels of some herbal plants with antimalaria potency in Ibadan South-West Local Government Area of Oyo State, Nigeria. IOSR Journal of Applied Chemistry, 13(1), 1–7. https://doi.org/10.9790/5736-1301010107
Biira, S., Ochom, P., & Oryema, B. (2021). Evaluation of radionuclide concentrations and average annual committed effective dose due to medicinal plants and soils commonly consumed by pregnant women in Osukuru, Tororo (Uganda).  Journal of Environmental Radioactivity. 227, 106460. http://doi.org/10.1016/j.jenvrad.2020.106460
Cengiz, G. B., & Çağlar, İ. (2019). Estimation of natural radioactivity of some medicinal or herbal plants used in Kars, Turkey. Acta Pharmaceutica Sciencia, 57(4), 133–139. https://doi.org/10.23893/1307-2080.APS.05729
Chandrashekara, K., & Somashekarappa, H. M. (2016). Estimation of radionuclides concentration and average annual committed effective dose due to ingestion for some selected medicinal plants of South India. Journal of Radiation Research and Applied Sciences, 9(1), 68–77. https://doi.org/10.1016/j.jrras.2015.09.005
Hashim, A. K., Hamza, A., Pradesh, H., Kumari, P., Kumar, G., Risk, C., Mohammed, R. S., (2019). Effective radium activity, radon exhalation rate, and uranium concentrations in medicinal plants. IOP Conf. Series: J. of Phy: Conf. Series, 1234, 012002. https://doi.org/10.1088/1742-6596/1234/1/012002
Jwanbot, D. I., Izam, M. M., Nyam, G. G., & John, H. N. (2013). Radionuclides analysis of some soils and food crops in Barkin Ladi LGA, Plateau State, Nigeria. Journal of Environment and Earth Science, 3(3), 79–87.
Kareem, A. A., Hady, H. N., & Abojassim, A. A. (2016). Measurement of natural radioactivity in selected samples of medical plants in Iraq. International Journal of Physical Sciences, 11(14), 178–182. https://doi.org/10.5897/IJPS2016.4507
Kolapo, A. A., & Omoboyede, J. O. (2018). Health risk assessment of natural radionuclide and heavy metals in commonly consumed medicinal plants in South‒West Nigeria. Ife J. of Sci., 20 (3), 529–537.
Makouate, H. F., & Lekagne, J. B. D. (2022). African pear (Dacoryodes edulis (G.Don) H.J.Lam) physical characteristics, nutritional properties and postharvest management: A review. Agric. Conspec. Sci., 87(1), 1-10
Monica, S., Jojo, P. J., & Khandaker, M. U. (2020). Radionuclide concentrations in medicinal florae and committed effective dose through Ayurvedic medicines. International Journal of Radiation Biology, 96(8), 1028-1037. http://doi.org/10.1080/09553002.2020.1767816
Nahar, A., Asaduzzaman, K., Islam, M. M, Rahman, M. M., & Begum, M. (2018). Assessment of natural radioactivity in rice and their associated population dose estimation. Radiat. Eff. Defect. S, 173(11–12), 1105-1114. https://doi.org/10.1080/10420150.2018.1542696.
Njinga, R. L., Jonah, S. A., & Gomina, M. (2015). Preliminary investigation of naturally occurring radionuclides in some traditional medicinal plants used in Nigeria. Journal of Radiation Research and Applied Sciences, 8(2), 208–215. https://doi.org/10.1016/j.jrras.2015.01.001
Noorul, H., Nesar, A., Zafar, K., Khalid, M., Zeeshan, A., & Vartika S. (2016). Health benefits and pharmacology of Persea americana mill. (Avocado). Int. J. of Res. in Pharmac., & Pharmacotherapeutics, 5(2), 132-141.
Omonhinmin, G. (2017, February 26). Ewu: Chieftaincy tussle that will not go away. The Guardian. https://www.guardian.ng/features/ewu-chieftaincy-tussle-that-will-not-go-away/
Omonhinmin C. A. (2012). Ethnobotany of Dacryodes edulis (G. Don) H.J. Lam in Southern Nigeria: Practices and Applications among the Yoruba Speaking People. Ethnobot. J., 10, 175-184. doi:10.17348/era.10.0.175-184
Oni, O. M., Isola, G. A., & Sowole, O. (2011). Natural activity concentrations and assessment of radiological dose equivalents in medicinal plants around oil and gas facilities in Ughelli and environs, Nigeria. Environment and Natural Resources Research, 1(1), 201–206. https://doi.org/10.5539/enrr.v1n1p201
Orosun, M. M., Alabi, A. B., Olawepo, A. O., Orosun, R. O., Lawal, T. O., & Ige, S. O. (2018). Radiological Safety of Water from Hadejia River. IOP Conf. Series: Earth and Environ. Sci., 173(1). https://doi.org/10.1088/1755-1315/173/1/012036
Osayande, A., & Christopher, K. S. (2019). Particle size and quick undrained triaxial analysis of soil samples from major gullies sites in Edo State. International Journal of Geography and Regional Planning Research, 4(2), 1-15.
Owolabi, T. A., Ezenwa, K. C., Olayioye, E. Y., Iyorhibe, O. C., Amodu, E., & Aferuan, O. F. (2019). Adaptogenic (Anti-Stress) Effect of Aqueous Musanga cecropioides (Urticaceae). Int. J. Curr. Microbiol. App. Sci., 8(10), 2558-2565.
Popoola, F. A., Fakeye, O. D., Basiru, Q. B., Adesina, D. A., & Sulola, M. A. (2019). Assessment of radionuclide concentration in surface soil and human health risk associated with exposure in two higher institutions of Esan land, Edo State, Nigeria. Journal of Applied Sciences and Environmental Management, 23(12), 2279–2284. https://doi.org/10.4314/jasem.v23i12.29
Saenboonruang, K., Phonchanthuek, E., & Prasandee, K. (2018). Determination using gamma spectroscopy of natural radionuclide activity concentrations and annual committed effective doses in selected Thai medicinal plants. Chiang Mai J. Sci., 45(2), 821–831.
Saudi, H. A., Abedelkader, H. T., Issa, S. A. M., Diab, H. M., Alharshan, G. A., & Zakaly, H. M. H. (2022). An in-depth examination of the natural radiation and radioactive dangers associated with regularly used medicinal herbs. Int. J. Environ. Res. Public Health, 19, 8124. https://doi.org/https://doi.org/10.3390/ijerph19138124
Sowole, O., & Olaniyi, O. E. (2018). Assessment of radioactivity concentrations and effective of radionuclides in selected fruits from major markets at Ijebu – Ode in Ogun State, Southwest of Nigeria. J. Appl. Sci. Environ. Manage., 22(1), 95–98.
Sultana, S., Ferdous, J., & Haque, M. M. (2020). Natural radioactivity and hazards assessment in medicinal plants in Bangladesh, Journal of Health Science, 10(1), 20-27. http://doi.org/10.5923/j.health.20201001.03
Sussa, F. V., Damatto, S. R., Alencar, M. M., Mazzilli, B. P., & Silva, P. S. C. (2013). Natural radioactivity determination in samples of Peperomia pellucida commonly used as a medicinal herb. J. of Environ. Rad., 116, 148-151, DOI: 10.1016/j.jenvrad.2012.09.012
Swaroop, A., Bagchi, M., Moriyama, H., & Bagchi, D. (2018). Health benefits of mango (Mangifera Indica L) and Mangiferin. Japan J. of Med., 1(2), 149–154. http://doi.org/xxx/jjm.109
Tchokossa, P., Olomo, J. B., Balogun, F. A., & Adesanmi, C. A. (2013). Assessment of radioactivity contents of food in the oil and gas producing areas in Delta State, Nigeria. International Journal of Science and Technology, 3(4), 245–250.
Tettey-larbi, L., Darko, E. O., Schandorf, C., & Appiah, A. A. (2013). Natural radioactivity levels of some medicinal plants commonly used in Ghana. SpringerPlus, 2(157), 1–9.
Toungos, M. D. (2019). Lemon grass (Cymbopogon, L spreng) valuable grass but underutilized in Northern Nigeria. Int. J. Innovative Food, Nut., & Sust. Agric., 7(2), 6-14.
Ugbede, F. O., Akpolile, A. F., Oladele, B. B., Agbajor, G. K., & Popoola, F. A. (2022). Ingestion exposure and committed health risk of natural radioactivity and toxic metals in local rice sold in Enugu urban markets. International Journal of Environmental Analytical Chemistry, 1–21. https://doi.org/10.1080/03067319.2022.2036983
Ugbede, F. O., Agbajor, G. K., Akpolile, A. F., Popoola, F. A., Okoye, O. N. N., Akpobasahan, E. A., & Umeche, M. A. (2023). Ingestion exposure of public to natural radionuclides and committed effective dose and cancer risk through tuber crops cultivated in Ebonyi State, Nigeria. Environ. Monit. Assess., 195:1385. https://doi.org/10.1007/s10661-023-11992-2
UNSCEAR United Nations. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000. In Sources and Effects of Ionizing Radiation: Sources (Vol. 1); United Nations Publications: New York, NY, USA, 2000.
World Health Organization (WHO) (2007). WHO guidelines for assessing the quality of herbal medicines with reference to contaminants and residues. World Health Organization, 1–17.
World Health Organization (WHO) (2015). WHO statistical profile. Country Statistics and Global Health Estimates by WHO and UN Partners. Global Health Observatory, World Health Organization.