Treatment of Domestic Wastewater Using two Substrates of Constructed Wetland Planted with Phragmites australis in Arid Regions (Southeast Algeria, Biskra)

Document Type : Original Research Paper

Authors

1 Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development, and Environment (Larghyde), Department of Hydraulic and Civil Engineering, University of Mohamed Kheider Biskra, Bp 145 RP, 07000 Biskra, Algeria

2 Scientific and Technical Research Center for Arid Areas, Biskra, M.B. 1682 Biskra 07000, Algeria

3 Research Laboratory in Underground and Surface Hydraulics - LARHYSS– Faculty of Science and Technology- Department of Civil Engineering and Hydraulics. Biskra University, MB. 145. R.P.07000, Algeria

4 Department of Biology, Amine Elokkal El Hadj Moussa Egakhamouk University of Tamanghasset, 11000, Tamanghasset, Algeria

5 Laboratoire de Recherche Sciences et Environnement : Bioressources, Géochimie-Physique Législation et Développement Socio-Economique « SCIENV-C1810200 »-Université de Tamanghasset, Algérie

6 Higher School of Saharan Agriculture – El Oued, PB 90 Chouhada, El Oued 39011, Algeria

7 Laboratory of the Development of Automatic and Intelligent Control Systems in Agriculture (DSCAIARA). University of Biskra, Bp 145 RP, 07000 Biskra, Algeria

Abstract

Constructed wetlands (CWs) have been widely recognised for efficiently removing many pollutants from wastewater, making them vital for environmental bioremediation. The substrates used in constructed wetlands are crucial in determining their overall performance, notably their ability to improve nitrogen and phosphorus removal from wastewater. This study aims to investigate the possibility of removing pollutants from wastewater using a pilot scale vertical flow constructed wetland (VFCW) planted with Phragmites australis applied to various substrates, such as gravel and sand in an arid climate in Southeast Algeria.
The study involved using four basins, filled with sand and gravel. Two were planted with Phragmites australis and the others were left as a control without vegetation. The efficiency of the filtration systems was evaluated based on various physicochemical and organic parameters. 
Results showed that the highest hydraulic retention time is in the 7 days. The removal efficiency values are 84.38% for biological oxygen demand (DBO5), 77.45% for chemical oxygen demand (COD), and 83.30% for total solid matter (TSS) in the planted gravel filter. The planted sand filter had even higher removal efficiency values, with 89.59%, 85.80%, and 86.63% for DBO5, COD, and TSS, respectively. Nitrate concentration increased in all filters due to the complete transformation of ammonium into nitrate. NO2-, NH4+, and PO43- removal efficiencies were also higher in the planted sand filter 74.45%, 95.43%, and 77.64%, respectively.

Keywords

Main Subjects


Abdelhakeem, S. G., Aboulroos, S. A., & Kamel, M. M. (2016). Performance of a vertical subsurface flow constructed wetland under different operational conditions. Journal of Advanced Research, 7(5), 803e814. https://doi.org/10.1016/j.jare.2015.12.002.
Abissy, M., & Mandi, L. (1999). The use of rooted aquatic plants for urban wastewater treatment: case of Arundo donax. Revue des Sciences de L’Eau/Journal of Water Science 12(2), 285–315. Available from: https://id.erudit.org/iderudit/705353. 
Abou-Elela, S. I., & Hellal, M. S. (2012). Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyperus. Ecological Engineering, 47, 209e213. https://doi.org/10.1016/j.ecoleng.2012.06.044.
Al-Saad, M. H., Elaibi, A. I., & Mageed, I. S. (2021). Improving Nutrient Removal in Constructed Wetland Wastewater Treatment. Journal of Petroleum Research and Studies 2011, 2, 44-64. https://www.doi.org/10.52716/JPRS.V2I2.38.
Aslam, M. M., Malik, M., Baig, M. A., Qazi, I. A., & Iqbal, J. (2007). Treatment performances of compost-based and gravel-based vertical flow wetlands operated identically for refinery wastewater treatment in Pakistan. Ecological Engineering 30(1), 34–42. https://doi.org/10.1016/j.ecoleng.2007.01.002.
Barco, A., & Borin, M. (2017). Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment. Ecological Engineering, p. 107, 160e171. https://doi.org/10.1016/j.ecoleng.2017.07.
Bensmina-Mimeche, L., Debabeche, M.,  & Benameur, N. (2013). Capacité de filtres plantes de macrophytes pour l’épuration des eaux usées dans le climat semi-aride.  Courrier du Savoir.17: 33-37.
Binder, W., Göttle, A., & Shuhuai, D. (2015). Ecological restoration of small water courses, experiences from Germany and from projects in Beijing. International Soil and Water Conservation Research, 3, 141e153. https://doi.org/10.1016/j.iswcr.
Bohorquez, E., Paredes, D., & Arias, C. A. (2017). Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: Effect of different design and operational parameters. Environmental Technology, 38(2), 199e208. https://doi.org/10.1080/09593330.2016.1230650.
Caballero-Lajarín, A., Zornoza, R., Faz, A., Lobera, J.B., Muñoz, M.A., & Domínguez-Oliver, S.G. (2015). Combination of Low-Cost Technologies for Pig Slurry Purification under Semiarid Mediterranean Conditions. Water. Air. Soil Pollut, 226.
Chen, S. C., Jan, M. Y., Lin, K. L., Chao, S. L., & Liao, C. S. (2017). Sustainability of constructed wetland under the impact of aquatic organisms overloading. Sustainability, 9(5), 863. https://doi.org/10.3390/su9050863.
Ciria, M. P., Solana, M. L., & Soriano, P. (2005). Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering 92(4), 535–544. https://doi.org/10.1016/j.biosystemseng.2005.08.007.
EL Fanssi, S., Ouazzani, N., & Mandi, L. (2019). Efficacité de l’épuration des eaux usées domestiques par filtres plantés et essais de réutilisation des eaux usées épurées en milieu rural marocain. Geo-Eco-Trop 43(3), 385–393. 
Fai, C. M.,   Haris, H., & Chin, S. Z. (2021). Assessment of phosphorus removal performance of subsurface constructed wetland during dry and wet conditions. Proceedings of green design and manufacture 2020. https://www.doi.org/10.1063/5.0045144.
García-Avila, F., Patino-Chavez, J., Zhinín-Chimbo, F., Donoso-Moscoso, S., Flores del Pino, L., & Aviles-Anazco, A. (2019). Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. International Soil and Water Conservation. Research. https://doi.org/10.1016/j.iswcr.2019.04.001.
García-Valero,  A., Martínez-Martínez, S., Faz, Á., Angélica Terrero, M., Ángeles Muñoz, M., Gómez-López, M. D., & Acosta, J. A. (2020). Treatment of Wastewater from the Tannery Industry in a Constructed Wetland Planted with Phragmites australis.  Agronomy 2020, 10, 176.  https://doi.org/10.3390/agronomy10020176.
Gouaidia, L., Guefaifia, O., Boudoukha, A., LaidHemila, M., & Martin, C. (2012). Évaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols: exemple de la plaine de Meskiana (Nord-Est Algérien). Physio- Géo. Géographie Physique et Environnement 6, 141–160. https://doi.org/10.4000/physio-geo.2632.
Guerrouf, N., & Seghairi, N. (2022). Removal of nitrogen and phosphorus from domestic wastewater in arid regions by a filter planted with Typha latifolia. Algerian Journal of Environmental Science and Technology 8(1), 2322- 2328.
He, Q., & Mankin, K. R.  ( 2002). performance variations of COD and nitrogen removal by vegetated submerged bed wetlands. Jawra Journal of the American Water Resources Association, 38(6): p. 1679-1689.
JORA. (2012). Journal officiel de la république Algérienne, Les spécifications des eaux usées épurées utilisées à des fins d’irrigation et la liste des cultures pouvant être irriguées avec des eaux usées épurées, Arrêté interministériel du 02 Janvier2012.
Kabboura, A., Mouhira, L.,  Benrahmanea, L., Bendaouda, A., Laaouanb, M., & El Hafidib, M. (2022). Domestic wastewater treatment using tidal flow constructed wetland. Desalination and Water Treatment 91–95. https://www.doi.org/10.5004/dwt.2022.28475.
Kadlec, R. H., & Knight, R. L. (1996). Treatment Wetlands.  CRC Press, Lewis Publishers, Boca Raton, FL, p. 893. 
Kadlec, R.H., & Wallace, S. (2008). Treatment Wetlands. CRC Press, Florida. http://dx.doi.
org/10.1201/9781420012514
Kadlec, R. H., & Wallace, S. D. (2009). Introduction to treatment wetlands. Treatment Wetlands 3–30. https://doi.org/10.1201/ 9781420012514.
Kim, B., Gautier, M., Simidoff, A., Sanglar, C., Chatain, V., Michel, P., & Gourdon, R. (2016). pH and Eh effects on phosphorus fate in constructed wetland’s sludge surface deposit. Journal of Environmental Management, 183, 175–181. https://doi.org/10.1016/j.jenvman.2016.08.064.
Konnerup, D., Koottatep, T., & Brix, H. (2009). Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecological Engineering 35(2), 248–257. https://doi.org/10.1016/j.ecoleng2008.04.018.
Kyambadde, J., Kansiime, F., Gumaelius, L., & Dalhammar, G. (2004). A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Research, 38(2), 475e485. https://doi.org/10.1016/j.watres.2003.10.008.
Laaffat, J., Aziz, F., Ouazzani, N., & Mandi, L. (2016). Biotechnological approach of greywater treatment and reuse for landscape irrigation in small communities. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2017.01.006.
Mango, N., Makate, C., Tamene, L., Mponela, P., & Ndengu, G. (2017). Awareness and adoption of land, soil and water conservation practices in the Chinyanja Triangle, Southern Africa. International Soil and Water Conservation Research, 5,122e129. https://doi.org/10.1016/j.iswcr.2017.04.003.
Marín-Muñiz, J. L., Hernández, M. E., Gallegos-Pérez, M. P., & Amaya-Tejeda, S. I. (2020). Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecological Engineering, 147, 105658. https://doi.org/10.1016/j.ecoleng.2019.105658.
Nazer, D.W., Al-Sa’Ed, R.M., & Siebel, M.A. (2006). Reducing the environmental impact of the unhairing-liming process in the leather tanning industry.  J. Clean. Prod., 14, 65–74. 
Orimoloye, I. R., Kalumba, A. M., Mazinyo, S. P., & Nel,W. (2018). Geospatial analysis of wetland dynamics : Wetland depletion and biodiversity conservation of Isimangaliso Wetland.
Qomariyah, S. N., Utomo, B. P., & Ahmad Wahyudi, A. (2022). Constructed wetlands with Cyperus alternifolius as a sustainable solution for household greywater treatment. IOP Conference Series: Earth and Environmental Science 1065. https://www.doi.org/10.1088/1755-1315/1065/1/012025.
Rani, N., & Pohekar, K. N. (2021). Assessment of Hybrid Subsurface Flow Constructed Wetland Planted with Arundo Donax for the Treatment of Domestic Wastewater at Different Hydraulic Retention Time. Journal of Water Chemistry and Technology, 43(2), 178-183. https://doi.org/10.3103/S1063455X21020107.
Sandri, D., & Reis, A. P. (2021). Performance of constructed wetland system using different species of macrophytes in treating domestic sewage treatment. Revista Engenharia na Agricultura-REVENG, 29, 429-447. https://doi.org/10.13083/reveng.v29i1.12712.
Selvaraj, T., & Joseph, K. (2009). Correlation between electrical conductivity and total dissolved solids in natural waters. Malaysian Journal of Science 28.  https://doi.org/10.22452/mjs.vol28no1.7. 
Sharma, H. B., & Sinha, P. R. (2016). Performance analysis of vertical flow constructed wetland to treat domestic wastewater using two different filter media and canna as a plant. Indian Journal of Science and Technology 9(44), 1–7. https://doi.org/ 10.17485/ijst/2016/v9i44/105276.
Sirianuntapiboon, S., & Jitvimolnimit, S. (2007). Effect of plantation pattern on subsurface flow constructed wetland (SFCW) efficiency for sewage treatment. African Journal of Agricultural Research 2(9), 447–454. https://doi.org/10.5897/AJAR.9000215.
Stefanakis, A. I. (2020). Constructed wetlands: description and benefits of an eco-tech water treatment system. In Waste Management: Concepts, Methodologies, Tools, and Applications,  503-525.
Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment, Amsterdam: Elsevier Science 392. https://doi.org/10.1016/C2012-0-01288-4.
Tahir, U., Yasmin, A., & Hassan Khan, U. (2016). Phytoremediation : Potential flora for synthetic dyestuff metabolism. Journal of King Saud University Science, 28, 119e130. https://doi.org/10.1016/j.jksus.2015.05.009.
Talukdar, S., & Pal, S. (2017). Impact of dam on inundation regime of flood plain wetland of punarbhaba river basin of barind tract of Indo-Bangladesh. International Soil and Water Conservation Research, 5, 109e121. https://doi.org/10.1016/j.iswcr.2017.05.003.
Tang, JK., Jusoh, MNH., & Jusoh, H. (2023). Nitrogen and Phosphorus Removal of Wastewater via Constructed Wetlands Approach. tropical aquatique and soil pollution.  Volume 3(1), 2023, 76-87. https://doi.org/10.53623/tasp.v3i1.214.
Tsihrintzis, V. A. (2017). The use of vertical flow constructed wetlands in wastewater treatment. Water Resources Management, 31, 3245e3270. https://doi.org/10.1007/s11269-017-1710-x.
Vera, I., Verdejo, N., Chávez, W., Jorquera, C., & Olave, J. (2016). Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas. Journal of Environmental, 50, 21e30. https://doi.org/10.1016/j.ecoleng.2012.08.001.
Vera, L., Martel, G., & Marquez, M. (2013). Two years monitoring of the natural system for wastewater reclamation in Santa Lucia, Gran Canaria Island. Ecological Engineering, 50, 21e30. https://doi.org/10.1016/j.ecoleng.2012.08.001
Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australisin horizontal flow constructed wetlands for wastewater treatment: A review. Chem. Eng. J., 290, 232–242.
Vymazal, J. (2011). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science & Technology, 45, 61e69. https://doi.org/10. 1021/es101403.
Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2, 530e549. https://doi.org/10.3390/w2030530.
Xu, Q., & Cui, L. (2019). Removal of COD from synthetic wastewater in vertical flow constructed wetland. Water Environment Research, 91(12), 1661-1668. https://doi.org/10.1002/wer.1168.
Zhang, Z., Rengel, Z., & Meney, K. (2007). Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono-and mixed-culture in wetland microcosms. Water, Air, & Soil Pollution 183(1), 95–105. https://doi.org/ 10.1007/s11270-007-9359-3.
Zidan, A. R., El-Gamal, M. M., Rashed, A. A., & El-Hady Eid, M. A. (2015). Wastewater treatment in horizontal subsurface flow constructed wetlands using different media (setup stage). Water Science, 29(1), 26e35. https://doi.org/10.1016/j.wsj.2015.02.003.
Zorai, A., Benzahi, K., Labed, B., Ouakouak A., Serraoui, M., & Bouhoreira, A. (2022). Performance of Canna indica and Typha latifolia in mono and mixed culture for secondary wastewater treatment in constructed wetlands with vertical flows under arid conditions (Touggourt, Algeria). Water Practice and Technology 18 (1): 53–67 https://doi.org/10.2166/wpt.2022.163.