Research of Eventual Residues of Pesticides in Strawberry Fruits Using Gas Chromatography Combined with Mass Spectrometry

Document Type : Original Research Paper

Authors

1 Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, 18000 Jijel, Algeria

2 Faculty of Sciences, University of M'Sila, PO box Ichebilia, M'Sila 28000, Algeria

Abstract

Our research focused on the Jijel region, where strawberry cultivation expanded considerably from 4 hectares in 2002 to 661 hectares in 2023. This study aimed to identify any pesticide residues in strawberries (Fragaria x ananassa Duch). Over two years, strawberries were cultivated in a plastic greenhouse using pesticides to either prevent or treat diseases as they developed. The fruit samples were collected and analyzed using a gas chromatograph coupled with a mass spectrometer. Numerous components were identified in the treated strawberry fruits; some are unique to strawberries, while others have not been documented in literature as strawberry constituents. The majority of the compounds found in the strawberry fruit were polyphenolic metabolites, alkanes, esters, aldehyde, aromatic alcohol, fatty acids, carbohydrates, phthalates, plasticizer derivatives, and others. All treated strawberry samples from both seasons showed no detectable pesticide compounds in the fruit. Nevertheless, certain samples contained hazardous pollutants such as 1,2,4-Benzenetriol and hydroquinone, as well as pesticide metabolites like di-n-octyl phtalate. The strawberry extract contained compounds similar to those naturally present in strawberries, but they appeared to have changed. Among the major components detected was a plasticizer compound: 1,2-benzenedicarboxylic acid mono (2-ethylhexyl) ester, identified as a pollutant result from the use of plastic materials in strawberry growing. These compounds were found to exhibit antioxidant, antimicrobial, antifungal, and insecticide properties. Some compounds were reported to have unknown activity. In conclusion, the fruits of treated strawberries contain a variety of bioactive compounds along with pollutants that could affect human health. 

Keywords

Main Subjects


Akbarizare, M. (2021). GC-MS Analysis and Antimicrobial Activity of an Iranian Traditional Medicinal Smoke (Anbarnasara). J Infect Dis Med Microbiol., 9(3), 148-155.
Al Bratty, M., Makeen, H.A., Alhazmi, H.A., Syame, S.M., Abdalla, A.N., Homeida, H.E., & Khalid, A. (2020). Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L. J. Chem., 1-11.  
Al-Rubaye, A. F., Kaizal, A.F., & Hameed, I. H. (2017). Phytochemical screening of methanolic leaves extract of Malva sylvestris. International Journal of Pharmacognosy and Phytochemical Research., 9, 537-552.  
Amal, S.A., El-Mogy, M.M., Aboul-Anean, H.E., & Alsanius, B.W. (2010). Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science & Ornamental Plants., 2, 88-97.  
Amala, V. E., & Jeyaraj, M. (2014). Determination of antibacterial, antifungal, bioactive constituents of triphala by FT-IR and GC-MS analysis. Int J Pharm Pharm Sci, 6(8), 123-126.
Anttonen, M. J., Hoppula, K. I., Nestby, R., Verheul, M. J., & Karjalainen, R. O. (2006). Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria× ananassa Duch.) fruits. J. Agric. Food Chem., 54(7), 2614-2620. 
Battino, M., Giampieri, F., Cianciosi, D., Ansary, J., Chen, X., Zhang, D., Zhang, D., Gil, E & Forbes-Hernández, T. (2021). The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. Phytomedicine., 86, 153170. 
Bazgaou, A., Fatnassi, H., Bouharroud, R., Ezzaeri, K., Gourdo, L., Wifaya, A., Demrati , H , Elame, F. Carreño-Ortega, A., Bekkaoui, A., Aharoune, A., & Bouirden, L. (2021). Effect of active solar heating system on microclimate, development, yield and fruit quality in greenhouse tomato production. Renew. Energy., 165, 237-250. 
Beulah, G. G., Soris, P. T., & Mohan, V. R. (2018). GC-MS determination of bioactive compound of Dendrophthoe falcata (LF) Ettingsh: An epiphytic plant. Int. J. Health Sci. Res, 8, 261-269.  
Charles R. W., Raymond J.H.T. (1991). The Pesticide manual: a world compendium, 9th ed, British Crop Protection Council, Farnham, Surrey, UK, pp. 212.
Chauhan, A., Chakraborti, A. K., & Jain, R. K. (2000). Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun, 270(3), 733-740.  
Dabrowska, D., Kot-Wasik, A., & Namiesnik, J. (2004). The Importance of Degradation in the Fate of Selected Organic Compounds in the Environment. Part II. Photodegradation and Biodegradation. Pol. J. Environ. Stud., 13(6).
Dahlen, T., Hauck, T., Wein, M., & Schwab, W. (2001). 2, 5-Dimethyl-4-hydroxy-3 (2H)-furanone as a secondary metabolite from D-fructose-1, 6-diphosphate metabolism by Zygosaccharomyces rouxii. J. Biosci. Bioeng., 91(4), 352-358. 
Dou, R., Sun, J., Deng, F., Wang, P., Zhou, H., Wei, Z., Chen, M.,  He, Z.,  Lai, M.,  Ye, T  & Zhu, L. (2020). Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Sci. Total Environ., 701, 134916. 
Du, X., Plotto, A., Baldwin, E., & Rouseff, R. (2011). Evaluation of volatiles from two subtropical strawberry cultivars using GC–olfactometry, GC-MS odor activity values, and sensory analysis. J. Agric. Food Chem., 59(23), 12569-12577.
Duan, W., Peng, L., Zhang, H., Han, L., & Li, Y. (2021). Microbial biofertilizers increase fruit aroma content of Fragaria×ananassa by improving photosynthetic efficiency. Alex. Eng. J., 60(6), 5323-5330. 
El-Korany, A.E. & Mohamed, R.A. (2008). The use of antioxidants to control grey mould and to enhance yield and quality of strawberry. Alex. j. Agri. Sci., 7, 1-38.
Elleuch, L., Shaaban, M., Smaoui, S., Mellouli, L., Karray-Rebai, I., Fourati-Ben Fguira, L., Khaled, A., Shaaban, Kh.A., & Laatsch, H. (2009). Bioactive Secondary Metabolites from a New Terrestrial Streptomyces sp. TN262. Appl Biochem Biotechnol., 162, 579–593.  
Elumalai, P., Yi, X., Chen, Z., Rajasekar, A., de Paiva, T. C. B., Hassaan, M. A., Ying, G., & Huang, M. (2022). Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation. Environ. Pollut., 306, 119452.
Forney, C. F., Kalt, W., & Jordan, M. A. (2000). The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience, 35(6), 1022-1025.
Gill, H.K. and Garg, H. (2014). Pesticide: environmental impacts and management strategies. In Pesticides-toxic aspects, Editor Sonia Soloneski. National University of La Plata. 8. pp 187.
Gushit, J. S., Ekanem, E. O., Adamu, H. M., & Chindo, I. Y. (2013). Analysis of herbicide residues and organic priority pollutants in selected root and leafy vegetable crops in plateau state, Nigeria. J. Anal. Chem., 1(2), 23-28.
Hoda, S., Gupta, L., Shankar, J., Gupta, A. K., & Vijayaraghavan, P. (2020). cis-9-hexadecenal, a natural compound targeting cell wall organization, critical growth factor, and virulence of Aspergillus fumigatus. ACS omega., 5(17), 10077-10088.
Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., & Bhat, T.A. (2021). Strawberry (F. × ananassa)-Morphology, Taxonomy, Composition and Health Benefits. In: Fruits Grown in Highland Regions of the Himalayas. Springer, Cham. 
Jasim, H., Hussein, A. O., Hameed, I. H., & Kareem, M. A. (2015). Characterization of alkaloid constitution and evaluation of antimicrobial activity of Solanum nigrum using gas chromatography mass spectrometry (GC-MS). J. Pharmacognosy Phytother., 7(4), 56-72.
Kafkas, E., & Kafkas, S. (2016, August). Identification of strawberry (Fragaria× ananassa ‘Rubygem’) volatiles using various SPME fibres by GC/MS. In VIII International Strawberry Symposium 1156 (pp. 689-694).  
Kaur, B., Kumar, N., Chawla, S., Sharma, D., Korpole, S., Sharma, R., ... & Saxena, S. (2022). A comparative study of in-vitro and in-silico anti-candidal activity and GC–MS profiles of snow mountain garlic vs. normal garlic. J. Appl. Microbiol., 133(3), 1308-1321.
Kavipriya, K., & Chandran, M. (2018). FTIR and GCMS analysis of bioactive phytocompounds in methonalic leaf extract of Cassia alata. Biomed. Pharmacol. J., 11(1), 141-147. 
Kawanishi, S., Inoue, S., Kawanishi, M. (1989). Human DNA damage induced by 1, 2, 4-benzenetriol, a benzene metabolite. Cancer research., 49, 164-168. 
Kong, Q., Yan, W., Yue, L., Chen, Z., Wang, H., Qi, W., & He, X. (2017). Volatile compounds and odor traits of dry-cured ham (Prosciutto crudo) irradiated by electron beam and gamma rays. Radiat. Phys. Chem., 130, 265-272.
Lambert, Y., Demazeau, G., Largeteau, A., & Bouvier, J. M. (1999). Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem., 67(1), 7-16.
Lee, S. F., Liang, Y. C., & Lin, J. K. (1995). Inhibition of 1, 2, 4-benzenetriol-generated active oxygen species and induction of phase II enzymes by green tea polyphenols. Chem Biol Interact., 98(3), 283-301.
Mahmood, I., Imadi, S.R.; Shazadi, K., Gul, A., & Hakeem, K.R. (2016). Effects of Pesticides on Environment. In Plant, Soil and Microbes, Hakeem, Springer, Cham., Print ISBN. pp. 253-269.   
Oyedeji, A. B., Chinma, C. E., Green, E., & Adebo, O. A. (2021). Metabolite data of germinated Bambara groundnut flour and starch extracted with two different solvents. Data in Brief., 38, 107-288.
Oz, A. T., Baktemur, G., Kargi, S. P., & Kafkas, E. (2016). Volatile compounds of strawberry varieties. Chem. Nat. Compd., 52, 507-509.
Park, E. R., Lee, H. J., & Kim, K. S. (2000). Volatile flavor components in Bogyojosaeng and Suhong cultivars of strawberry (Fragaria ananassa Duch.). Prev Nutr Food Sci., 5(3), 119-125. 
Pereira, S.I., Figueiredo, P.I., Barros, A.S., Dias, M.C., Santos, C., Duarte, I.F., & Gil, A.M. (2014). Changes in the metabolome of lettuce leaves due to exposure to mancozeb pesticide. Food Chemistry, 154, 291-298.
Peris-Felipo, F. J., Benavent-Gil, Y., & Hernández-Apaolaza, L. (2020). Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiol Biochem., 152, 23-31. 
Pico, Y., Alfarhan, A. H., & Barcelo, D. (2020). How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar. TrAC, Trends Anal. Chem., 122, 115720. 
Prasher, I. B., & Dhanda, R. K. (2017). GC-MS analysis of secondary metabolites of endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. Int J Pharm Sci Rev Res., 44(1), 217-223. 
Qadir, A., Ali, A., Arif, M., Al-Rohaimi, A. H., Singh, S. P., Ahmad, U., Khalid, M. & Kumar, A. (2018). Solvent extraction and GC-MS analysis of sesame seeds for determination of bioactive antioxidant fatty acid/fatty oil components. Drug Research, 68(06), 344-348.
Rangel-Sánchez, G., Castro-Mercado, E., & García-Pineda, E. (2014). Avocado roots treated with salicylic acid produce phenol-2, 4-bis (1, 1-dimethylethyl), a compound with antifungal activity. J. Plant Physiol., 171(3-4), 189-198. 
Rho, H. S., Baek, H. S., You, J. W., Kim, S. J., Lee, J. Y., Kim, D. H., & Chang, I. S. (2007). New 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one derivative has both tyrosinase inhibitory and antioxidant properties. Bull. Korean Chem. Soc., 28(3), 471-473. 
Rohloff, J. (2011). Impact of agricultural and environmental factors on strawberry (Fragaria× ananassa Duch.) aroma-A review. Eur. J. Plant Sci. Biotechnol, 5(1), 17-34.
Shi, M., Sun, Y., Wang, Z., He, G., Quan, H., & He, H. (2019). Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains. Environ. Pollut., 250, 1-7.
Shiomi, N., and Savitskaya, A. (Eds.). (2022). Current Topics in Functional Food. BoD–Books on Demand.   
Simkova, K., Veberic, R., Grohar, M. C., Pelacci, M., Smrke, T., Ivancic, T., ... & Jakopic, J. (2024). Changes in the Aroma Profile and Phenolic Compound Contents of Different Strawberry Cultivars during Ripening. Plants., 13(10), 1419. 
Stachniuk, A., Fornal, E. (2016). Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Anal. Methods., 9, 1654-1665. 
Sun, J., Wu, X., & Gan, J. (2015). Uptake and metabolism of phthalate esters by edible plants. Environ. Sci. Technol., 49(14), 8471-8478.  
Susilawati, N. P. A., Suprihatin, I. E., & Adhi, N. G. A. M. D. (2016). Analisi residu pestisida organofosfat pada buah stawberry (Fragaria ananassa Rosalinda) menggunakan kromatografi gas. AnalisI, 4(1). 
Tin Leung, K., Campbell, S., Gan, Y.; White, D.C., Lee, H.; Trevors, J.T. (1999). The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol. Lett., 173, 247-253. 
Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Cordia Chu., Chu C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health., 18(3), 1112.  
Vox, G., Loisi, R. V., Blanco, I., Mugnozza, G. S., & Schettini, E. (2016). Mapping of agriculture plastic waste. Agric Agric Sci Procedia., 8, 583-591. 
Wadkar, S. S., Shete, C. C., Inamdar, F. R., Wadkar, S. S., Gurav, R. V., Patil, K. S., & Ghosh, J. S. (2017). Phytochemical screening and antibacterial activity of cryptocoryne spiralis var. spiralis and Cryptocoryne retrospiralis (Roxb) Kunth. Med Aromat Plants (Los Angels)., 6(289), 2167-0412.  
Wang, Q., Shen, J., Zeng, B., & Wang, H. (2020). Identification and analysis of odor-active compounds from Choerospondias axillaris (Roxb.) Burtt et Hill with different moisture content levels and lacquer treatments. Sci. Rep., 10(1), 14856.
Wang, S. Y., & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem., 48(2), 140-146. 
Wedde, A. E. (2014). Metabolite Profiling of Commercially Important Strawberry (Fragaria X Ananassa) Cultivars Throughout Development (Doctoral dissertation, Washington State University). 
Youn, K., Kim, J. Y., Yeo, H., Yun, E. Y., Hwang, J. S., & Jun, M. (2012). Fatty acid and volatile oil compositions of Allomyrina dichotoma larvae. Prev Nutr Food Sci., 17(4), 310.
Yuan, M. (2010). Analysis of butylated hydroxytoluene in food with headspace Trap-GC/MS. Food and Nutrition, 20.
Zamorska, I. (2022). Volatile Components of Strawberries. In Recent Studies on Strawberries. IntechOpen. 
Zhan, X., Khan, R. A. A., Zhang, J., Chen, J., Yin, Y., Tang, Z., ... & Liu, T. (2023). Control of postharvest stem-end rot on mango by antifungal metabolites of Trichoderma pinnatum LS029-3. Sci. Hortic, 310, 111-696.
Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X., & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria×ananassa Duch.) during fruit development and maturation. J. Exp. Bot., 62(3), 1103-1118.
Zhang, Q., & Ruan, J. (2016). Tea: Analysis and Tasting. Encyclopedia of Food and Health, 256–267.  
Zhao, L., Huang, Y., Zhou, H., Adeleye, A. S., Wang, H., Ortiz, C., Ortiz, C., Mazer, S.J., & Keller, A. A. (2016). GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environ. Sci. Nano., 3(5), 1114-1123.
Zhou, Y., Zhao, W., Shang, F., & Zhang, D. (2020). Development of bioactive components from Chaenomeles sinensis leaves. Therm. Sci., 24(3 Part A), 1795-1802.