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INTRODUCTION

The total number of solid and liquid particles suspended in the air, many of which are hazardous, 
is known as particulate matter. Inhalable particles with a diameter of 10 micrometres or less are 
referred to as PM10 (Tong et al., 2020; X. Wu et al., 2020). The formation of PM10 is influenced 
by a combination of environmental factors and anthropogenic activities. Environmental factors 
include meteorological conditions and natural events such as wildfires, volcanic eruptions, and 
dust storms (Sohrab et al., 2024). Anthropogenic activities comprise of vehicular transmissions, 
agricultural, industrial and construction activities (Abbas et al., 2021). Asthma, respiratory 
infections, lung cancer, and chronic obstructive pulmonary disease(COPD) are all caused by 
exposure to PM10 (WHO Regional Office for Europe, 2013). The elderly and children with 
chronic heart or lung disease are most likely to suffer negative health effects from PM10 exposure, 
according to the researchers (Brunekreef & Holgate, 2002; Pope III, 2002). Increased PM10 
concentrations have been linked to a higher mortality rate. India has one of the highest rates 
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Accurate predictions of air pollutant PM10 concentrations are essential for crafting effective 
air quality management strategies. This study compares three decision tree ensemble models—
Random Forest (RF), Extra Trees, and Extreme Gradient Boosting (XGBoost)—to forecast 
daily PM10 levels in Thiruvananthapuram, India. By integrating meteorological data and air 
pollutant variables, this study aims to enhance both the accuracy and interpretability of urban 
air pollution dynamics. Spearman correlation analysis is employed to analyse the relationships 
between PM10 and the various input features. The predictive performance of the ensemble 
models is evaluated using Root Mean Squared Error (RMSE) and Coefficient of Determination 
(R²). The Extra Trees model demonstrates superior predictive performance, achieving an R² 
of 0.945 and an RMSE of 8.174 μg/m³. The model-agnostic interpretability method SHapley 
Additive exPlanations (SHAP) demonstrates that PM2.5, NH3, NO2, and O3 have a major 
impact on PM10 forecasts. Additionally, it reveals that meteorological conditions, particularly 
rainfall and relative humidity, play a crucial role in determining PM10 concentrations. This 
research highlights the potential of machine learning techniques, especially when combining 
the Extra Trees model with SHAP, to assist local governments in strategic planning and air 
quality management efforts. Although temporal coverage limits are acknowledged, this study 
offers useful information to environmental agencies and policymakers looking for data-driven 
strategies to reduce air pollution.
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of cardiovascular disease (CVD) prevalence worldwide. The annual number of CVD deaths in 
India is anticipated to rise from 2.26 million in 1990 to 4.77 million in 2025 (Huffman et al., 
2011). The research study conducted about the risk factors associated with Chronic obstructive 
pulmonary disease (COPD), in the city of Thiruvananthapuram identified air particulate matter 
as a significant contributor (Surendran et al., 2022).

Thiruvananthapuram, the capital of Kerala, the southernmost state of India, is indeed 
distinguished by such unique geographical location along the southwestern coast, by lush 
green geography, and by rich cultural heritage. Also, about 1.5 million people inhabit this city, 
which engages itself in some of the most important roles as an education, industrial, tourist and 
administrative canter. The major sources of air pollution in Thiruvananthapuram are attributed 
to vehicular transmission, landfills, industrial emissions, waste burning and construction 
activities (Aiswarya et al., 2023; Kumar & Swarnalatha, 2019). When compared to a number of 
other major Indian cities, Thiruvananthapuram, has demonstrated a much superior air quality 
condition (Lavanyaa et al., 2023). Also, the city experiences fluctuations in air quality due 
to various factors, including seasonal changes and meteorological conditions and hence has 
problems with air pollution, especially with regard to PM10 and other contaminants (Nishanth 
et al., 2012; Sumesh et al., 2017).

Innovations in computational methods and the availability of large amount of data 
storage devices, have resulted in the development of applications for predicting air pollutant 
concentrations for a spectrum of uses. Machine learning algorithms have been successfully 
applied to the forecasting of a wide range of air pollutant concentrations over a variety of time 
scales (Bellinger et al., 2017; Xi et al., 2015). Researchers developed an ANN and SVM based 
PM10 forecasting model with a two-year data set of air pollutant and meteorological parameters 
from Taiyuan, China, and then the Taylor expansion forecasting model to revise the forecasting 
goal, resulting in a high accuracy rate (P. Wang et al., 2015). A random forest model that used 
satellite, meteorologic, atmospheric, and land-use data for predicting daily PM2.5 concentrations 
at a resolution of 1 × 1 km throughout an urban area, was developed by researchers (Brokamp 
et al., 2018). Researchers developed Artificial Neural Networks (ANN), Boosted Regression 
Trees (BRT), and SVM machine learning models to predict PM10 and PM2.5 levels based on 
traffic, meteorological, and pollutant data collected from various locations in London from 2007 
to 2012(Suleiman et al., 2019). A method for integrating quantile regression into the boosted 
regression trees (BRT) technique for the purpose of forecasting PM10 in Malaysia was proposed 
in the research work of (Verma et al., 2024). Accurate prediction mechanism for PM10 and PM2.5 
was devised in Seoul, South Korea, using meteorological data and tree-based machine learning 
methods, and light gradient boosting method yielded the most accurate prediction results (Kim 
et al., 2022). The gradient-boosting regression tree model demonstrated the most effective 
performance in the research conducted to forecast PM10 concentrations in the Caribbean region 
(Plocoste & Laventure, 2023).

While many studies have used various machine learning models to predict PM10, these black-
box models often fail to identify the factors affecting forecasting accuracy. Understanding 
these variables is crucial for improving system efficacy and minimizing costs in air pollution 
prediction. Based on the literature, it is noted that the researchers employed explainable AI 
frameworks such as Permutation Feature Importance (PFI) and SHapley Additive exPlanations 
(SHAP) to interpret the output of machine learning models, thereby addressing the challenges 
posed by black-box models. XGBoost and SHAP were employed to investigate the influence 
of meteorological factors on PM10 concentrations in the Belgrade region of Serbia (Stojić, 
2021). A random forest model with SHAP was implemented to investigate the spatiotemporal 
fluctuations of meteorological, socioeconomic, topographic, and land cover factors that are 
affecting the concentrations of PM2.5 in Zhejiang Province, China (Li et al., 2021). The research 
work of (Y. Wu et al., 2022) described the seasonal prediction of PM2.5 concentrations in Beijing 
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using a variety of machine learning models, as well as the impact of meteorological factors on 
the specific predictions, using SHAP. In the research investigation of  (S. Wang et al., 2023), 
a machine learning interpretation method based on SHAP was proposed to analyse the factors 
that contribute to the variation of PM2.5 and O3 concentrations, based on the CatBoost model. 
The evaluation of human and meteorological influences on PM10 predictions for Queensland, 
Australia was conducted using a variety of decision tree ensemble models and SHAP (Verma 
et al., 2024).

Despite significant advancements in understanding air quality dynamics and the application 
of conventional statistical techniques for pollutant prediction, there remains a notable gap 
in utilizing the effectiveness of ML methodologies for predicting PM10 concentrations in the 
study region. In recent years, there has been a growing interest in understanding PM10 due 
to its significant health impacts and environmental implications. Most existing studies in the 
study region have primarily focused on characterizing PM10, its health impacts, identifying its 
various physio-chemical properties, and determining the sources of its origination. Even while 
some progress has been made in this regard, there is still a large gap in the development and 
implementation of machine learning models designed especially to forecast PM10 concentrations 
in the study area. Moreover, although tools such as SHAP have been widely used to improve 
model interpretability, limited research work systematically explores how these analysis results 
can guide decision processes in air quality management. 

Hence this research work aims to explore and define key aspects related to PM10 prediction 
within the framework of decision tree ensemble methods, emphasizing their interdependencies 
with meteorological and air pollutant factors. This is the initial study to employ machine 
learning and ML based interpretability methods to elucidate the factors that affect the PM10 
concentrations of Thiruvananthapuram city. The objective of this study is to examine the 
potential of three decision tree ensemble regression models (RF, Extra Trees and XGBoost 
in predicting daily PM10 concentrations in Thiruvananthapuram city, using a variety of air 
pollutant and meteorological factors as input features.  Using SHAP analysis, the study then 
seeks to identify the influential factors of PM10 prediction from the well-performing decision 
tree ensemble model. The research objectives of this study are  

(1)	 To analyse the performance of decision tree ensemble models in PM10 prediction.
(2)	 To identify the key features influencing PM10 concentrations using SHAP analysis.
(3)	 To enhance the understanding of feature contributions to PM10 predictions.

MATERIALS AND METHODS
Study Area and Dataset

This study is conducted for the capital city of Kerala, Thiruvananthapuram. The ambient 
air quality monitoring station in the city is located at Plammoodu (Latitude: 8.51N, Longitude: 
76.94). Kerala State Pollution Control Board (KSPCB) owns and operates the monitoring 
station. The daily data for the analysis is obtained from the Central Pollution Control Board’s 
(CPCB) website. The data is collected for 914 days, from July 1, 2017 to December 31, 2019. 
The dataset contains daily values of PM10 and other air contaminants termed as PM2.5, NO, 
NO2, NOx, NH3, CO, O3, and SO2. Wind speed (WS), wind direction (WD), atmosphere air 
temperature (AT), relative humidity (RH), rainfall volume (RF), ambient temperature (Temp), 
solar radiance (SR), and buoyancy pressure (BP) are the meteorological parameters included 
in the data set. PM10 is the target variable and the remaining 16 variables are the independent 
variables. The machine learning models and model interpretability technique SHAP in this 
study are developed using Colab Notebook, a Google Cloud Computing service, in Python 
programming language.

In the data preprocessing phase, records containing missing values are excluded from the 
dataset, as the quantity of missing values is minimal (Blenkinsop et al., 2015; Kujawska et al., 
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2022). The kernel density estimate (KDE) plot of PM10,  which is a graphical representation 
that estimates the probability density function of target variable PM10 is shown in Figure 1. 
The plot exhibits a single, prominent peak around a PM10 value of around 50-60 μg/m³. This 
suggests that the majority of the PM10 measurements fall within this range. Also, the distribution 
appears to be relatively symmetric, with the peak located close to the centre of the X-axis. This 
indicates a relatively normal or Gaussian-like distribution of PM10 concentrations. The tails of 
the distribution extend towards both lower and higher PM10 values, suggesting the presence 
of some outliers or less common observations at the extremes. The width of the distribution 
provides an indication of the overall variability or dispersion of PM10 levels in the dataset.

Here the Spearman correlation is used to analyse the association between the target variable 
PM10 and the input features. It is a useful tool for assessing the strength and direction of monotonic 
relationships between variables (Alsaqr, 2021). Spearman correlation  heatmap of the features 
used in this study is shown in Figure 2. Every square shows the correlation outcome of two 
different variables. The heatmap establishes that PM2.5 has the highest positive correlation to 
PM10. The air pollutants O3, NH3, SO2 and NO2 also have significant positive correlation with 
the PM10. The meteorological factors that show moderate positive correlation with PM10 are SR, 
BP and ambient temperature. The RH and RF features exhibit a substantial negative correlation 
with the PM10, whereas the wind speed exhibits a mild negative correlation. 

The Spearman correlation heatmap demonstrates that the majority of air pollutant factors 
have significant direct effects on PM10, while meteorological conditions are not having much 
significant impact. The correlation heatmap emphasizes the presence of multicollinearity, 
particularly among air pollutant factors. The impact of explanatory variables on the target 
variable is difficult to comprehend when relying solely on correlation coefficient matrices due 
to multicollinearity, which complicates explanatory analysis using traditional methods. SHAP 
method can be implemented to resolve this issue. This method improves interpretability by 
elucidating the influence mechanisms, even in the presence of multicollinearity.

Random Forest (RF) Regressor 
RF is a type of supervised machine learning model that integrates several decision trees 

 
 

 

Fig. 1. Visualization of the PM10 data distribution 

  

Fig. 1. Visualization of the PM10 data distribution



Pollution 2025, 11(2): 525-537529

into a single model for numerical value prediction. It is an ensemble model that tries to lessen 
overfitting and at the same time attempts to augment accuracy by combining the predictions 
of several decision trees (Kabiraj et al., 2020). Each tree in the forest uses a different subset of 
the data as the basis for its own independent forecast. The final input prediction is based on the 
average, of all the predictions provided by each individual tree. RF works on the concept of 
integrating numerous decision trees to determine the final output instead of depending solely 
on individual decision trees. RF method is based on Bootstrap and Aggregation, often known 
as bagging(Prasad et al., 2021; J. Zhou et al., 2020). 

Extra Trees Regressor
Extra Trees regressor, also known as Extremely Randomised Trees, is a kind of ensemble 

learning technique that generates a forecast by combining the output of several de-correlated 
decision trees gathered in a “forest.”(Geurts et al., 2006). Unlike RF, decision trees are trained 
using the complete dataset in Extra Trees. It is substantially faster than RF, because Extra Trees 
uses a random algorithm to choose the value at which to split features rather than RF’s greedy 
technique (Wehenkel et al., 2006; Yarveicy & Ghiasi, 2017). Extra Trees includes creating a 
randomised ensemble of trees and aggregating their predictions in a suitable manner, such as 
arithmetic or majority voting in classification/regression problems (Nistane & Harsha, 2018; 
Seyyedattar et al., 2020). It applies the random forest principle, by training each base estimator 
with a random subset of features. However, when splitting the node, it chooses the best function 
and the corresponding value at random. The cut points used to break nodes in Extra Trees 
and RF are also different. Extra Trees selects the best split when Random Forest chooses it at 
random. 

 
 

Fig. 2. Spearman Correlation heatmap of all variables 

  

Fig. 2. Spearman Correlation heatmap of all variables
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Extreme Gradient Boosting (XGBoost) Regressor
XGBoost is a supervised machine learning algorithm which is used to make predictions 

on continuous numerical data. It makes use of the gradient boosting ensemble method, which 
builds a stronger, more accurate model by combining the predictions of several weaker models 
(Asselman et al., 2023). An ensemble of decision trees is produced by XGBoost, and each tree 
is trained to generate predictions using a subset of the given data. The trees are grown one 
after the other, each one picking up insights from its predecessor’s errors. The average of the 
forecasts from each tree in the ensemble is used to get the final prediction (Lin et al., 2022; L. 
Zhang et al., 2020). XGBoost’s efficiency in managing big datasets and missing data is one of 
its advantages. 

Performance Evaluation
The root mean squared error (RMSE) and coefficient of determination (R2) are employed 

to evaluate the performance of the established tree models in predicting PM10. The association 
between the actual and predicted PM10 values is calculated using the determination coefficient, 
R2. An R2 of 1 indicates that the model predictions perfectly fit the data.  The RMSE is a metric 
that quantifies the average variation between the predicted and actual values of a model. It 
offers an estimate of the model’s ability to accurately predict the objective value. The model is 
more accurate when the RMSE is lower.

Model Interpretability using SHAP
SHapley Additive exPlanations (SHAP) is a frequently employed approach for interpreting 

predictions in black box type machine learning models and is developed by Lund berg and Lee 
(Lundberg & Lee, 2017). This is a model-agnostic technique and can be applied to a wide variety 
of machine learning models (Chaibi et al., 2021; Ullah et al., 2023). Over the past few years, 
there has been an increasing interest in the application of SHAP to elucidate machine learning 
models. The SHAP method is founded on Shapley values in cooperative game theory, which are 
used to evaluate the contributions of each participant in a game (Li et al., 2021; Rajput et al., 
2023). The objective is to distribute benefits equitably among players who join a coalition. The 
relationship between Shapley values and model interpretation is derived from the fact that the 
variables used for training are referred to as “players,” while the model’s predictions represent 
the matching “revenues” (Y. Zhang et al., 2024). The SHAP method enables users to gain a 
deeper understanding of the importance of individual variables in predicting outcomes, thereby 
facilitating a more comprehensive understanding of sophisticated machine learning  models. 
SHAP offers both local and global explanations for machine learning models (Zheng et al., 
2023). The SHAP Python module and the TreeExplainer library are employed to generate 
SHAP interpretations in this study.

RESULTS AND DISCUSSION

The potential of the three ensemble models in PM10 prediction is examined. Here the tree 
models are fitted on the training dataset with 80% of the original dataset and then tested on the 
test dataset with the remaining 20% of the original dataset (Bharat et al., 2018; Bhatt et al., 
2023). The default parameter setting of RF, Extra Trees and XGBoost models are employed. 
The results of performance metrics of the three models are given in Table 1. 

Higher R² values indicate better model performance in explaining variability in PM10 
concentrations and all models show strong explanatory power, with Extra Trees model leading 
(Puri et al., 2018). Lower RMSE values indicate more accurate predictions (Ağbulut et al., 
2021). It is evident that Extra Trees model resulted in the least RMSE (8.174 μg/m3) and the 
highest R2 score (0.945), compared to the RF model and XGBoost models. This indicates that 
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approximately 94.5% of the variance in PM10 concentrations can be explained by the Extra 
Trees model.  An RMSE of 8.174 indicates that, on average, the Extra Trees model predictions 
deviate from actual PM10 values by about 8.17 µg/m3. Hence Extra Trees model outperforms 
both Random Forest and XGBoost in terms of R² and RMSE, indicating it provides the best 
balance between accuracy and precision for PM10 prediction among the models evaluated.

The plot of PM10 predicted values vs. actual PM10 values using the best performing Extra 
Trees model is shown in Figure 3. The blue line represents the predicted PM10 measurements, 
while the green line shows the actual PM10 values. The predicted PM10 values generally follow 
the overall trend of the actual PM10 measurements over the test data and it indicates that the 
model used for the predictions is able to capture the broad patterns and dynamics of the PM10 
concentrations. The discrepancies in the plot represent situations where the Extra Trees model’s 
predictions do not align perfectly with the actual PM10 concentrations.

The prediction residual plot based on Extra Trees regression model is shown in Figure 4. 
Majority of the data residuals (the difference between the actual and predicted values) shown 
in the figure are close to the zero baseline, which proves that the developed Extra Trees 
model provides a good prediction of PM10 values. Also, the residuals are scattered around the 
horizontal zero line, indicating that the model’s predictions are generally unbiased (Espinheira 
et al., 2021). The magnitude of the residuals is generally within the range of -20 to +20 μg/m³, 
suggesting that the model’s predictions have a reasonably good fit to the actual PM10 values.

In order to evaluate the influence of predictor variables on the predictions made by the 
machine learning algorithms, SHAP technique is implemented. SHAP is established on the 
Extra Trees prediction model, which demonstrates the highest level of prediction performance. 
Valuable insights into the impact of factors on forecasting outcomes are provided by the SHAP 
results, which captures both individual factor effects and relationships among factors. The 
beeswarm plot is employed to demonstrate the global contribution of each individual feature on 
the model’s predictions, as shown in Figure 5.

In beeswarm plot, each row represents an individual feature and the features are organized 

Table 1. Performance metrics of PM10 prediction 
 
 

Model R2 RMSE (μg/m3) 
Extra Trees 0.945 8.174 

Random Forest 0.939 8.655 
XGBoost 0.929 8.833 

 

Table 1. Performance metrics of PM10 prediction

 

 

 

Fig. 3. Plot of actual and predicted PM10  values by Extra Trees model 

  

Fig. 3. Plot of actual and predicted PM10  values by Extra Trees model
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in a hierarchy with the decreasing order of importance. The beeswarm plot provides a concise 
overview of the magnitude and direction of each attribute’s global impact. The horizontal 
position of the dots indicates whether the feature has a positive or negative impact on PM10 
prediction. The dots to the right side indicate a positive impact, while those to the left side 
indicate a negative one. The colours of the dot denote the value of the feature, which assists in 
determining its impact on PM10 predictions. The feature’s higher values are represented by red 
points, while the lower values are represented by blue points. The density of the dots indicates 
the degree to which each feature influences PM10 predictions across a variety of data points. It 
is shown that PM2.5 is the greatest contributor to the PM10 formation. Higher values of PM2.5 
contribute to higher PM10 concentrations (Dongarrà et al., 2010).  Following PM2.5, NH3, NO2, 
and O3 also demonstrate a higher level of positive significance in the forecasted PM10 results 
(Huang et al., 2021; Riches et al., 2022).  Air pollutants NOx and SO2 are having acceptable 
contribution in predicting PM10. However, among all the air pollutant factors, NO and CO have 
the least significant effect. In terms of meteorological conditions, the most significant impact on 
PM10 is done by the factors RF and RH, with BP and SR following as the next most influential 
factors. Higher values of RF, wind speed and wind direction result in lesser PM10 values. Rainfall 
largely lowers PM10 concentrations through the washout effect, in which raindrops absorb and 
remove suspended particles from the environment (Y. Zhou et al., 2020). High humidity can 
raise PM10 concentrations by increasing their likelihood of remaining suspended in the air (Li et 
al., 2017). However, ambient temperature and air temperature indicate only a negligible impact 
on PM10.

The SHAP technique can also elucidate the local interpretation of influence of features 
on PM10 prediction, quantify the relative importance of features, and explain the outcomes 
of individual observations. Figure 6 illustrates the SHAP method’s explanation on a single 
instance of  PM10 prediction (with PM10 value = 40.30), that is arbitrarily selected from the test 
dataset. It can be seen that PM2.5 demonstrated the highest contribution, followed by NH3 and O3. 
The local interpretations are aggregated by averaging the absolute Shapley values per attribute 
across the data in order to generate a global interpretation of the Extra Trees model predictions. 
The SHAP feature importance plot, depicted in Figure 7, illustrates the global impact of each 
feature on the prediction of PM10. The SHAP method reveals that the most critical features are 
PM2.5 and NH3, while the least effective feature is air temperature. NO2, O3, NOx, and SO2 are 
among the most significant air pollutants that influence PM10 predictions, while RF and RH are 

 

 

Fig. 4. Residual Plot of  PM10  prediction by Extra Trees model 

  

Fig. 4. Residual Plot of  PM10  prediction by Extra Trees model
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Fig. 5. Beeswarm summary plot of SHAP  

  

 

Fig. 6. Explanation of the Extra Trees model’s PM10 output value of 40.30 using SHAP 

  

Fig. 5. Beeswarm summary plot of SHAP

Fig. 6. Explanation of the Extra Trees model’s PM10 output value of 40.30 using SHAP

 
 

 

Fig. 7. SHAP Feature importance plot 

 

Fig. 7. SHAP Feature importance plot
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the most significant meteorological factors. This is in accordance with the scientific knowledge 
and results obtained in the Spearman correlation analysis, which suggest a direct correlation 
between the aforementioned factors and PM10. 

CONCLUSION

PM10 is a significant contributor to air pollution, posing risks to both human health and 
the environment. Regular estimation of PM10 levels is essential for assessing air quality 
and implementing effective mitigation strategies. This study highlights the role of machine 
learning techniques, especially the Extra Trees model, in improving the prediction of 
PM10 concentrations in Thiruvananthapuram. By effectively combining air pollutant and 
meteorological data, this model outperforms other ensemble methods - Random Forest and 
XGBoost. The use of SHAP for interpretability analysis indicates that PM2.5, NH3, and NO2 
are key contributors to PM10 levels, underscoring the necessity for targeted regulatory actions 
to reduce these pollutants. Additionally, the identification of relative humidity and rainfall as 
influential meteorological factors highlights the importance of incorporating weather data into 
air quality models for improved prediction accuracy. One significant limitation of this study 
is its reliance on a 2.5-year time frame for predicting PM10 levels, which may not fully reflect 
the long-term environmental changes and variations in air quality. Additionally, the research 
does not account for fluctuations in pollutant emissions that can occur due to factors such as 
festivals, industrial activities, or seasonal changes. Future studies are aimed to extend both the 
time frame and incorporate seasonal elements to achieve a more thorough understanding of 
air quality dynamics. Overall, this research provides important insights for policymakers and 
environmental agencies, supporting informed decision-making to enhance public health and 
effectively address air pollution issues.
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