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ABSTRACT: Predicting the quality of water and air is a particular challenge for 
forecasting systems that support them. In order to represent the small-scale 
phenomena, a high-resolution model needs accurate capture of air and sea 
circulations, significant for forecasting environmental pollution. Data assimilation 
is one of the state of the art methods to be used for this purpose. Due to the 
importance of thermal structure in monitoring the variations of environmental 
phenomena, the present study has used Sea Surface Temperature (SST) in data 
assimilation method to optimize this parameter. SST is one of the most important 
factors to conduct researches on the ocean, the atmosphere, and their interaction, 
not to mention monitoring and forecasting air and ocean phenomena as well as 
commercial and fishing communities and weather forecasts. This study has aimed 
to present a satellite-derived SST based on pathfinder advanced very high 
resolution radiometer (AVHRR) data assimilating in FVCOM (finite volume 
community ocean model) on the Persian Gulf to examine the effect of data 
assimilation by using the Cressman scheme. The performance of this method has 
been compared to the optimal interpolation SST (OISST) data, via both visual 
comparisons and statistical parameters. Applying assimilation method improves 
correlation coefficient of the model from 0.92 to 0.99. Results demonstrate that 
the modeled SST has been completely reconstructed by the data assimilated 
experiment via the Cressman scheme for this region. The spatial and temporal 
pattern of SST reveals a significant improvement in the entire domain during the 
investigated period in the gulf.  

Keywords: data assimilation, cressman, FVCOM, OISST, SST. 

 

INTRODUCTION

 

Sea Surface Temperature (SST) has a diurnal 

range, just like the Earth's atmosphere above, 

though to a lesser degree thanks to its greater 

                                                           
 
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specific heat (Siegenthaler, 2003). Due to 

this temperature difference, warmth and 

moisture transport upward, condensing into 

vertically oriented clouds, which produce 

snow showers. Both the water temperature 

and the large-scale environment directly 
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affect the temperature decrease with height 

and cloud depth. The lower the temperature, 

the taller the clouds and the greater the 

precipitation rate (Barale, 2010). SST is one 

of the most important factors  to conduct a 

research on the ocean, the atmosphere, and 

their interaction (Kawai et al., 2006). It is 

also required to monitor and forecast ocean 

phenomena, not to mention for commercial 

and fishing communities (Castro et al., 2001; 

Li et al., 2010) .  

Changes in the thermal structure of water 

bodies are consistent with changes in the 

SST in response to climate change and 

natural variability along with known physical 

and biogeochemical phenomena in the 

oceans. Near the coastline, offshore winds 

move the warm waters towards the surface 

offshore, replacing them with cooler water 

from below in a process, known as Ekman 

transport. This pattern increases nutrients for 

marine life in the region.  

Studying these phenomena rely on 

accuracy and accessibility of SST maps. 

Processes such as sediment transport, 

nutrient distribution, and primary production 

highly depend on three-dimensional (3D) 

transport and mixing phenomena, for which 

the temperature distribution is an essential 

parameter. Although in situ measurements 

are the most exact method, scarcity of 

observational data, use of satellite monitored 

data is the only option in this regard. Satellite 

sensors such as Advanced Very High 

Resolution Radiometer (AVHRR) and 

Moderate Resolution Imaging 

Spectroradiometer (MODIS) can generate 

SST for a wide coverage of water surfaces 

(>1000 km
2
), involving suitable spatial (~1 

km at nadir) and temporal (two times per 

day) resolutions that cover variations in 

water temperatures well (Kilpatrick et al., 

2015).  

Although state-of-the-art coastal models 

are able to simulate many of the 

characteristic features of these systems, as 

well as their statistical occurrence with a 

reasonable degree of accuracy, the model 

simulations tend to contain some errors, 

due to uncertainty in the initial and 

boundary conditions and the intrinsic 

numerical and input data errors. 

Inaccurate numerical simulation of the 

wind, dependent on phenomena like wind 

waves and wave-induced currents in the 

Persian Gulf, suffers from lack of offshore 

wind stations and heat flux data, which is a 

cause for error in this simulation. 

In order to reduce the simulation errors, 

remotely observed data has been 

incorporated into the model, using data 

assimilation. The sparse in-situ surface 

observations have been complemented with 

huge amount of data coming from satellites. 

Fortunately, satellite observations have 

led to synoptic SST data for more than two 

decades. An early example of temperature 

assimilation was provided by Derber and 

Rosati (1989), who used statistical 

interpolation to assimilate SST and vertical 

profile measurements into a large scale 

upper-ocean GCM. Carton and Hackert 

(1990) combined SST observations and 

temperature vertical profiles into a model of 

the Tropical Atlantic, using a successive 

correction technique. Then Clancy et al. 

(1990, 1992) using an optimal interpolation 

scheme, combined synoptic ship, 

bathythermograph, buoy, and satellite data 

with the prediction of a mixed-layer model, 

to produce the optimum thermal 

interpolation system large-scale synoptic 

thermal analyses. Using an objective 

interpolation scheme, framed as a variational 

problem, Behringer (1994) assimilated SST 

and XBT (expendable bathy thermograph) 

observations to improve the representation of 

sea surface height model. Applications of 

high resolution setups (6 km and 10 km, 

respectively) for a primitive equation model 

in the Mediterranean and the Red Sea were 

presented by Horton et al. (1997) and 

Clifford et al. (1997). They assimilated a 

variety of in situ data together with multi-

channel SST (MCSST) data, introduced in 
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the model by means of a nudged optimal 

interpolation technique. 

She et al. (2007) and Larsen et al. 

(2007) preferred using satellite SST data 

reconstruction instead of in situ 

measurements data in the North and Baltic 

Sea, due to the former's temporal and 

spatial coverage. 

A variety of data assimilation (DA) 

methods have been developed, such as 

optimal interpolation (OI), variational 

method, and ensemble schemes based on 

Kalman Filter (Chang et al., 2013; Dong et 

al., 2016). Manda et al. (2005) recognized 

the skill and feasibility of nudging method, 

compared to sophistical assimilation 

methods, such as the EnKF for estimating 

the upper mixed layer. 

In this study, we have used nudging 

scheme to assess the ability of this 

assimilation scheme to improve the 

temperature field structure in a high-

resolution setup of a FVCOM model. After 

the SST assimilation process, the modeled 

oceanic state variables have been compared 

with the observed data to evaluate the 

improvements, yielded by the assimilation 

procedure. 

This paper is organized as the following: 

First, it briefly describes and evaluates the 

configuration and performance of the 

FVCOM model, then to briefly describe the 

observational data, providing an outline of 

the nudging in terms of its implementation 

and technical issues. Afterwards it examines 

the effects of the SST assimilation on the 

SST and subsurface temperature profiles. 

And at the end, it presents the summary and 

discussion. 

MATERIALS AND METHODS 
The model, used for this study, is Finite 

Volume Community Ocean Model 

(FVCOM), an unstructured grid, three-

dimensional primitive equation fully coupled 

with current–wave–ice finite volume 

community ocean model. This model was 

originally developed by Chen et al. (2003) 

and modified and upgraded by a joint effort 

of the University of Massachusetts-

Dartmouth (UMASS-D) and Woods Hole 

Oceanographic Institution (Chen et al., 

2006). FVCOM is governed by seven 

primitive equations of momentums, 

continuity, temperature, salinity, and density 

in the spherical coordinate; with turbulent 

mixing, parameterized by the general ocean 

turbulence model (Burchard, 2002) in the 

vertical and Smagorinsky turbulent closure 

scheme in the horizontal (Smagorinsky, 

1963). The flux forms of the governing 

equations are discretized in the unstructured 

triangular mesh in the horizontal and in the 

generalized terrain-following coordinate in 

the vertical (Pietrzak et al., 2002). FVCOM 

is integrated with options of various mode 

split and semi-implicit schemes in time and 

the second-order accurate advection schemes 

in space. The unstructured grid finite volume 

methods combine the best attributes of the 

finite difference method, for simple discrete 

computational efficiency, and the finite 

element methods, for geometric flexibility. 

The flux computational approach provides an 

accurate representation of mass, heat, and 

salt conservation. 

The FVCOM includes a number of 

options and components as shown in 

Figure 1. 

The computational domain is configured 

with the non-overlapped triangular grid. 

The horizontal resolution of the model grid 

varies from ~5km near the coast to ~25km 

in the offshore region of the Persian Gulf. 

The total numbers of triangular cells and 

nodes are 30552 and 15779, respectively. 

As the Gulf is a shallow water system with 

a mean depth of ~38m, the sigma 

coordinate, used in the vertical, has 10 

uniform layers. The major freshwater 

inflow from Arvand Roud River, formed 

when Euphrates, Tigris, and Karun Rivers 

merge into one, was specified based on the 

stream flow statistics for the Tigris River 

and Euphrates River Basins (Saleh, 2010). 

The climatological monthly mean of the 
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river inflow used an annual mean transport 

of 1,576 m
3
/s with the high-flow season 

starting from March and continuing until 

May. The Mellor-Yamada level 2.5 

turbulence closure (Mellor & Yamada, 

1982) scheme is used for vertical mixing 

parameterization, while the horizontal 

diffusion is parameterized by means of 

Smagorinsky formulation. The external and 

internal mode time steps are 6.0 and 60.0 s, 

respectively. 

Initially the model was spun up for five 

years with three hourly-observed wind 

stress and heat flux as forcing fields, 

obtained from the European Centre for 

Medium Range Weather Forecasts 

(ECMWF) reanalysis project, which is 

going to be referred to as the control run 

hereafter. Then for the sake of assimilation, 

the model spun up with the same setup, 

though with daily AVHRR SST data. 

The study period is from 1998 to 2003 

and the study area is the Persian Gulf (Fig. 

2). The surface forces including daily 

surface wind, precipitation, evaporation, 

shortwave, long wave radiation, latent, and 

sensible heat fluxes, were prepared from 

ECMWF (European Centre for Medium-

Range Weather Forecasts) setup data with 

0.5 °C spatial and 6 h temporal resolutions 

available from 1998 to 2003, containing 

reanalysis product. To modify and localize 

the wind data set in the domain, the used 

results were those of Abbaspour and 

Rahimi (2011). 

  

 

Fig. 1. The FVCOM modules 
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Fig. 2. The study domain 

Five years of SST data, collected between 

1998 and 2003, were selected for 

assimilation, which had been acquired from 

the processed AVHRR Oceans Pathfinder 

project of NASA Jet Propulsion Laboratory 

(JPL) as well as Physical Oceanography 

Distributed Active Archive Centre (PO 

DAAC) due to its low-spatial and high-

temporal resolution. Ahmadabadi et al. 

(2009) showed that  the maximum, 

minimum, and mean error rates for SST in 

the Persian Gulf were 0.77, -0.09, and ±0.43 

respectively, which are acceptable amounts. 

The NOAA Optimum Interpolation 

Daily SST Analysis 0.25 x 0.25-degree 

resolution gridded data (Reynolds et al., 

2007) (OISST only available from 1982) 

(Shu et al., 2009) was used in order to 

verify the assimilation procedure (Fig. 3). 

In order to assess the accuracy of the 

assimilation algorithm and model accuracy, 

statistical parameters such as the bias, root 

mean square error (RMSE), and standard 

deviation between both models were 

compared with satellite data to estimate the 

actual influence of the assimilation. This part 

of the validation process also covered data 

from different times in different locations of 

the Persian Gulf.  The bias, root mean square 

error (RMSE) and standard deviation could 

be calculated as follows: 
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where, X and Y are the model and satellite 

data, respectively. 

Although in comparison to some 

sophistical assimilation methods such as the 

EnKF, the Cressman method is considered a 

simple method, it is a computationally fast 

assimilation scheme, making it a good choice 

for those applications that need quick and 

exact results with low-cost computational 

programs such as operational forecasting 

models. Due to its low complexity and very 

accurate results, it is suitable for operational 

assimilation of a variety of variables, such as 

SST, SSH, etc. When using this method, 

there are two problems to be considered: the 

first is its unrealistic extremeness in shallow 

parts of the study area, because of the 

complexity of these areas along with te 

instability of this method, in case the 

observations are less than the model grids. 

However, when assimilating satellite data, 

such as SST, in which their resolutions are 

higher than the model, it cannot be 

noticeable. 
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Fig. 3. Locations of the OISST data observation nodes 

The Cressman method, as described in 

the Nowicki paper (Nowicki et al., 2015), 

is performed as follows: Firstly, the 

background state 𝑥𝑏   is set equal to the 

previous forecast performed by the model. 

Then the satellite data, used for the 

assimilation, are stored in the matrix 

denoted by y. The data, suspected of being 

invalid because of clouds, the presence of 

ice, or any other reason, are masked out. 

The result of the analysis a
x is then 

calculated according to Equation (4). 
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where i and j represent the satellite and 

model data grid points respectively, and 
2

.i jd  

is the distance between points i and j. The 

main parameters of the Cressman method 

that need to be chosen are the influence 

radius R and the shape of the weight function 

w, which determine how the satellite data 

affect the model. One of the disadvantages of 

this method is that the influence radius has to 

be determined by trial and error, causing the 

parameterization of this method laborious. 

After many trials with different sets of 

the parameters, the one that gave the best 

results was chosen. The radius R of the 

influence was set to 20 grid-points. Beyond 

that distance, the satellite data weight 

equaled zero. The weight function in this 

case would be equal to: 
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In addition, the parameter E was used in 

the successive correction method, 

introduced above. E
2
 is an estimate of the 

ratio of the observation error to the first 

guess field error. E was set to 0.5 (E
2
= 

0.25), which means that the satellite data 

were treated more accurately than the 

model data. However, they never had a 

weight, equal to one. In the absence of this 

parameter (E
2
= 0), the satellite data, if 

present at a particular location, would be 

one, meaning that the model data at this 

point would be omitted. The presence of E
2
 

ensures that the model data has taken 

everywhere into account, ensuring 

smoothing of the analysis product, which 

prevents possible instabilities. The product 

of assimilation is then used as the new 

initial state of the model and the new 

forecast is calculated. 
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RESULTS AND DISCUSSIONS 

Impacts of SST assimilation 
The test of the model was run on the five-

year period, from 1998 until 2003. The 

model assimilation was performed with 

and without satellite SST respectively, 

referred to in this paper as assimilation and 

control run. Results of both runs are 

compared with each other as well as with 

satellite data. Validation of the satellite 

data assimilation with the FVCOM model 

contained two parts: Firstly, the results of 

both models were compared with the 

satellite data to check whether the 

assimilation algorithm was working 

properly and to examine the impact of the 

assimilation on the model results. 

Spatial distribution results 
Figures 4 and 5 demonstrate the 

improvement of the FVCOM mean spatial 

SST modeling, throughout the study with 

regards to assimilating the SST data every 

24 hours. They illustrate the ability of the 

DA system to correct SST pattern and 

systematic model errors, respectively.  

Figure 4 shows that the assimilation run 

produced a pattern much closer to the 

OISST. This qualitative consistency is a 

general feature of the whole SST of the 

domain. The left and middle of Figure 4 

depict the mean difference of OISST and 

SST model solution from satellite data 

without and with data assimilation, 

respectively. The picture on the right 

shows the difference between the two 

model runs. The two corners of figure 

show that the model has difficulties 

reproducing the observed SST in the 

Hormuz Strait, while the assimilated model 

SST agrees much better with the satellite-

derived data (middle of Fig. 5).  

 

Fig. 4. Spatial distribution of SST: OISST (left), assimilated run (middle), and control run (right) 

 

Fig. 5. Mean spatial difference of SST during the entire study time 



Abbasi, M.R. et al. 

280 

Apparently, with SST observational 

data assimilation, we have reduced the 

deviation of SST model from the satellite 

data by more than 7°C. In addition, it can 

be seen that over most of the northern part 

of area, the model SST is underestimated 

in control run, especially in the Strait of 

Hormuz, while it is overestimated in the 

southern and shallow region of the domain. 

In assimilated run, the difference has 

declined during the study time, even 

though it has not totally become zero.  

Figure 6 presents a correlation of model 

data from both cases with satellite measured 

SST. As can be seen, there is a very strong 

correlation between all the SST data products 

from assimilation run and OISST. 

Table 1 lists the calculated statistical 

parameters as described before. The 

statistics clearly confirm that the 

assimilation algorithm does improve 

accuracy. Correlation of the model results 

with the assimilation makes the satellite 

data better, and the errors smaller.  

 

Fig. 6. Correlation of SST from the assimilated and control run with OISST 

 

Fig. 7. (Top) Time series of domain average two runs SST: with and without assimilation and OISST 

during (2000-2003), (bottom) mean difference of two runs with OISST 
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Table 1. Statistical comparison of both models with OISST 

Run type Bias     R 𝛔𝛆     

Assimilation run  0.48 0.99 0.2 

Control run -0.56 0.918 1.38 

 

From this table it can be also concluded 

that there is a significant agreement between 

the SST, obtained from assimilation run and 

OISST data. This can also be observed from 

Figure 7, which shows the yearly mean SST 

for two runs and OISST.  

Temporal evolution results 
Figure 7 compares the temporal evolution 

of SST estimates, between 2000 and 2003, 

obtained by the FVCOM model with and 

without data assimilation and averaged 

over the full model domain and mean of 

their SST (straight lines). As can be seen, 

the anomalies of assimilated SST relative 

to the OISST over the 3-year period at the 

entire domain are very close to zero but 

these values for control run are quite large. 

The figure shows that the mean 

differences are almost within 0.0 to +0.7°C 

in assimilation run. In contrast, the mean 

control run SST is considerably different 

from mean OISST with larger values 

during the entire run time [-2°C, 1.8°C]. 

This means that the data is dominated by 

the main seasonal signal. 

SUMMARY AND DISCUSSION 
One of the most important factors in relation 

to the accuracy of models' predictions is the 

model’s ability to represent physical 

processes correctly (e.g. thermocline depth, 

mixed layer). The quality of the model 

results in turn depends critically on the 

number, distribution, and quality of 

observations as well as on the methods, used 

to analyze them. NOAA’s satellite SST data 

and data assimilation methods feature these. 

This study applied Cressman scheme, which 

enables satellite SST observations 

assimilated into FVCOM model in the 

Persian Gulf. We demonstrate that, over the 

period of modeling, the agreement of the 

assimilated SST with the satellite 

observation has improved significantly, in 

comparison with the regular SST without 

DA. Application of the Cressman 

assimilation algorithm into the FVCOM 

model has improved its accuracy along with 

the conformance of its results with satellite-

measured SST. Result analysis gives a better 

view of the spatial and temporal error 

distribution in the investigated period. The 

correlation coefficient in this case has 

increased from 0.918 to 0.99.  

The assimilated simulation also 

demonstrates significant skills in 

reproducing general spatial pattern of the 

SST. Assimilation has also increased the 

correction of SSTs, which is reflected in 

Table 1. The average differences of the 

control run SSTs and assimilation run 

SSTs is relative to the OISST, in whole 

modeling time, shown in Figure 7.  

A significant improvement can be seen 

in the northern part of the area, especially 

near the Strait where the differences have 

become lower than 1°C (Fig. 5).  

When the satellite-borne SST data is 

assimilated into the FVCOM ocean model 

through the Cressman, the assimilated model 

state showed improvements, compared to 

those in the non-assimilative model over all 

the simulation periods for most of the model 

domain. The errors throughout the year 

indicate that the largest errors on the 

interpolated product are found during winter 

periods. While the former is a consequence 

of elevated satellite errors, the latter is 

probably due to the existence of shallow 

thermoclines during the summer. 
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