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ABSTRACT: Seasonal variation in water quality of Anchar Lake has been evaluated, 
using two multivariate statistical techniques, namely Principal Component Analysis 
(PCA) and Cluster Analysis (CA). Water quality data, collected during four seasons, have 
been analyzed for 13 parameters and ANOVA has shown that pH (F3= 10.86, P < 0.05), 
temperature (F3 = 65, P < 0.05), electrical conductivity (F3= 32.72, P < 0.05), Calcium 
(F3= 36.84, P < 0.05), Magnesium (F3= 16.52, P < 0.05), nitrate-nitrogen (F3= 48.06, P < 
0.05), ammonical nitrogen (F3 =198.75, P < 0.05), and dissolved oxygen (F3= 4.96, P < 
0.05) varied by season, whereas the substantial variations of sodium (F2= 7.18, P <0.05), 
phosphate-phosphorous (F2= 25.31, P < 0.05), biological oxygen demand (F2= 11.02, P < 
0.05), and chemical oxygen demand (F2=37.73, P < 0.05) were based on different sites. 
CA has grouped the three sampling sites throughout the four seasons into three clusters of 
similar water quality as relatively Less-Polluted (LP), Medium-Polluted (MP), and 
Highly-Polluted (HP). In addition, PCA has been applied on the extract to recognize the 
factors, responsible for water quality variations in four seasons of the year, resulting in 
four principal components for winter, summer, and autumn, five ones for spring, 
accounting for 79.58%, 89.07%, 83.34%, and 93.13% of total variance respectively. Thus 
the factors, responsible for water quality variation, are mainly related to domestic 
wastewaters, seasonal variation, agricultural runoff, and catchment geology. These results 
will help decision-makers better understand the influence of various factors on water 
quality and manage pollution/eutrophication adaptively in Anchar Lake. 
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INTRODUCTION

 

Surface waters such as shallow lakes are 

dynamic systems, characterized by a high 

degree of heterogeneity in space and time 

(Papatheodorou et al., 2006). The difference 
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of dissolved ions concentration in surface 

water is generally governed by lithology, 

quantity of water flow, nature of 

geochemical reactions, solubility of salts, and 

human activities (Takaijudin et al., 2016; 

Parmar & Bhardwaj, 2013). At present, one 

of the most common ecological problems of 
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inland water bodies is eutrophication, where 

water quality is impaired by spurring the 

excessive algae growth while the 

concentration of suspended organic material 

as well as heavy metal is increased (Wong et 

al., 2017; Noori et al., 2012; Ali et al., 2017). 

Eutrophication is most often the result of an 

elevated supply of nutrients, particularly 

nitrogen and phosphorus, which in turn 

enhances primary productivity (Najar & 

Khan 2013, 2012a, 2012b). Catchment area 

development, urbanization, and changes in 

hydrology affect the structure and function of 

these ecosystems (Mallick et al., 2016; 

Loganathan et al., 2015; Tian et al., 2012; 

Najar & Khan 2011). As human populates 

the watershed, deterioration of such 

environments has become a critical issue, in 

which excessive use of fertilizers in 

agricultural activities along with the inflow 

of domestic waste water greatly threatens 

surface water (Shin et al., 2013; Najar 2012; 

Ramachandra et al., 2014; Noori et al., 

2015), diminishing its usefulness for 

drinking, industrial, agriculture, and 

recreation purposes. Further, dumping 

wastes into the lakes also poses a threat, as 

decaying waste influences phosphates, 

nitrates, ammonia, and total solids (Yidanaa 

et al., 2008), thus affecting their functions 

and services. Therefore, it is essential to 

monitor water quality of the lakes for 

sustainable use (Virkutyte & Sillanpää, 

2006). Long-term monitoring, however, 

generates a large and complex database that 

needs a good approach for interpretation 

(Zhang et al., 2009). Thus multidimensional 

scaling analysis helps interpreting complex 

datasets, allowing a better understanding of 

spatial variations in water quality. These 

techniques are valuable tools to develop 

appropriate strategies for effective 

management of the water resources (Rajbira 

& Anishb, 2016). In the present study, water 

quality data matrix is subjected to different 

multivariate statistical techniques in order to 

extract some information about the 

similarities or dissimilarities of sampling 

sites during different seasons and to identify 

variables, responsible for any alteration and 

its sources.   

MATERIALS AND METHODS 
The Valley of Kashmir is a lacustrine basin 

of the intermountain depression, located 

between the Lesser and Greater Himalayas, 

which is characterized by numerous 

aquatic ecosystems of great ecological and 

economic importance. Freshwater lakes of 

Kashmir Himalayas have multiple 

important usages, such as being a source of 

drinking water, irrigation, navigation, 

fishery, agriculture, socioeconomic 

development, and recreation. However, in 

recent decades, the lake's ecosystem has 

changed drastically, having developed an 

exacerbated trend due to the disturbances 

in the catchment areas. As a result of 

anthropogenic pressures, the lake surface 

area is shrinking as the water quality 

deteriorates. The main problem of these 

lakes is nutrient enrichment from the 

catchment area in the form of domestic 

wastewaters and runoff from agricultural 

fields (Najar & Khan, 2012a). 

Anchar Lake is a shallow basin lake 

within the geographical coordinates of 

34°07′ to 34°10´ N latitude and 74°46′ to 

74°48′ E longitude (Fig. 1). It is situated 14 

km to the North-west of Srinagar city at an 

altitude of 1583 m above m.s.l, covering an 

area of 0.73 km
2
.
 
The lake is fed by Sindh 

Nallah as well as a number of springs, 

present in and along the periphery of the 

basin. The lake also gets water from the 

Khushalsar Lake via Achan Nallah. The 

catchment of the lake is comprised of 

arable land under paddy cultivation, 

vegetable gardens with multiple crops, and 

residential areas. The main threats to the 

lake are encroachment, sedimentation, 

agricultural runoff, dumping of 

domestic/municipal wastewaters, and 

effluents from Sher-i-Kashmir Institute of 

Medical Sciences (SKIMS). 

http://link.springer.com/search?facet-author=%22P.+Tian%22
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Fig. 1. Outline map of Anchar Lake, showing the sampling sites 

Water samples were collected monthly 

from three sites of the lakes. They were 

kept in 1-liter polyethylene plastic bottles, 

which were cleaned before with metal-free 

soap, rinsed repeatedly with distilled water, 

and soaked in 10% nitric acid for 24 h, 

eventually to be rinsed with ultrapure 

water. All water samples were stored in 

insulated coolers, containing ice, and were 

taken on the same day to the laboratory to 

be stored at 4°C until processing and 

analysis (APHA, 2005).  

Temperature (T) of water was measured 

in situ, using mercury centigrade 

thermometer (Ree, 1953). To measure the 

pH and electrical conductivity (EC), pH 

meter (Bates, 1978) and conductivity meter 

(Jasper, 1988) had been employed 

respectively. Calcium (Ca) and magnesium 

(Mg) concentrations were determined by 

versenate method (Katz & Navone, 1964), 

while Ammonium nitrogen (NH4-N) and 

nitrate nitrogen (NO3-N) were determined 

by phenate (Solorzano, 1969) and 

phenyldisulfonic acid method (Brown & 

Bellinger, 1978), respectively, using 

spectrophotometer. Phosphate phosphorous 

(PO4-P) was determined by molybdate 

method (Edwards et al., 1965). Dissolved 

Oxygen content (DO) and Biochemical 

Oxygen Demand (BOD5) were determined, 

using Winkler’s method (Mancy & Jaffe, 

1966). Chemical Oxygen Demand (COD) 

was estimated by dichromate method 

(Pitwell, 1983), while Sodium (Na) and 

potassium (K) were analyzed, using flame 

photometer (Thompson & Reynolds, 

1978). 

Aiming to evaluate significant 

differences within and among the sites for 

all water quality variables, the data was 

analyzed, using multivariate statistical 

techniques (Zar, 2009): two-way analysis 

of variance (ANOVA) at 0.05% level of 

significance, Cluster Analysis (CA), and 

Principal Component Analysis (PCA). All 

statistical analyses were performed using 

the SPSS statistical software (Version 16) 

and PAST statistical software (Version 

1.93). Multivariate statistical methods have 

been applied widely to investigate water 

quality (Boyacioglu & Boyacioglu, 2008; 

Noori et al., 2010; Najar & Khan, 2012a; 

Yidanaa et al., 2008; Simeonova et al., 

2010; Shrestha & Kazama, 2007). The 

combined use of principal component 
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analysis (PCA) and cluster analysis 

enabled the classification of water samples 

into distinct groups on the basis of their 

physicochemical characteristics. 

RESULTS AND DISCUSSION 
Figure 2 gives water quality parameters, 

measured from different sampling sites. 

There was a significant variation (P < 0.05) 

in physicochemical characteristics within 

and among the sampling sites during the 

study. Due to its influence on nutrients' 

solubility and availability as well as their 

utilization by aquatic organisms, pH 

becomes an important factor. It varied 

significantly throughout the seasons (F3= 

10.86, P < 0.05), having no significant 

variation within the sites (F2= 1.68, P < 

0.05), ranging between 7.13±0.07 and 

7.52±0.17 (Fig. 2a). The pH range from 6.0 

to 8.5 indicates productive nature of the 

water body (Garg et al., 2010). 

Temperature plays a vital role in 

controlling the chemical and biological 

composition of a freshwater body. In the 

present study, it ranged between 

6.5±1.31°C and 19.3±1.38°C, showing a 

significant variation among the seasons 

(F3= 265, P < 0.05), but no substantial 

change among the sites (F2= 4.48, P < 

0.05). EC showed a major variation among 

the sites (F2= 8.45, P < 0.05) as well as the 

seasons (F3= 32.72, P < 0.05), having a 

maximum value of 0.37±0.04 mS/m at 

Site-I during spring. It accounts for the 

nutrient load of the lake as it is subjected to 

high degree of anthropogenic activities 

such as wastewater discharges and 

agricultural runoff. Figure 2b illustrates the 

concentration of different cations. The 

variations of Ca was significant among the 

seasons (F3= 36.84, P < 0.05), but not so 

among the sites (F2= 4.38, P < 0.05); it 

ranged between 19.73±1.38 and 

50.26±3.01 mg/l. As for Mg, it ranged 

from 9.67±0.66 mg/l to 20.47±1.55 mg/l, 

showing a substantial variation among the 

seasons (F3= 16.52, P < 0.05) and an 

insubstantial one among the sites (F2= 

2.48, P < 0.05). Na exhibited no significant 

change among the seasons (F3= 2.66, P < 

0.05) but varied significantly within the 

sites (F2= 7.18, P < 0.05) and recorded a 

value between 10.74±0.55 mg/l and 

17.73±2.33 mg/l. As for K, there was no 

major change either among the seasons 

(F3= 3.04, P < 0.05) or within the sites (F2= 

3.30, P < 0.05); it ranged between 

3.33±2.33 mg/l and 12.75±3.75 mg/l. 

Among the cations (Ca, Mg, Na, and K), 

the former is the most dominant one, which 

is attributed to the predominance of lime 

rich rocks in the catchment area (Najar & 

Khan, 2012b, 2012c). PO4-P differs 

significantly within the sites (F2= 25.31, P 

< 0.05) but not among the seasons (F3= 

3.03, P < 0.05), reaching a maximum value 

of 352.30±39.45 µg/l (Fig. 2c). 

Phosphorous is an essential plant nutrient 

that stimulates the growth of algae and 

macrophytes in lakes. It is a proxy 

indicator of lake productivity (Najar & 

Khan, 2013; Najar, 2012). PO4-P enters the 

lakes through domestic wastewater, 

accounting for the accelerated 

eutrophication (Vyas et al., 2006; Najar & 

Khan 2012c). NO3-N showed a significant 

variation among the seasons (F3= 48.06, P 

< 0.05) but no substantial change within 

the sites (F2= 1.41, P < 0.05), having a 

range of 188.82±1.24 µg/l to 236.56±4.90 

µg/l. Increased concentration of PO4-P and 

NO3-N in the lakes results in enhanced 

productivity (Najar et al., 2014). NH4-N 

had a value between 262.63±24.14 µg/l 

and 393.90±5.54 µg/l, differing 

significantly among the seasons (F3= 

198.75, P < 0.05) as well as the sites (F2= 

14.90, P < 0.05). Ammoniacal nitrogen is 

usually high in organically-polluted waters 

and is also formed by the hydrolysis of 

urea, released from agricultural fields. 

Readily available as a nutrient for plant 

uptake, it may contribute to biological 

productivity (Sheela et al., 2011). DO 

showed significant variations among the 
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seasons (F3= 4.96, P < 0.05) and within the 

sites (F2= 135.33, P < 0.05), with a 

minimum value of 1.4±0.5 mg/l at Site-III 

during summer and a maximum value of 

3.47±0.24 mg/l at Site-I during winter (Fig. 

2d). DO is an essential factor for 

maintaining aquatic life. Its level in lakes 

varies according to the lake trophic levels. 

Dissolved oxygen content depends on 

photosynthetic activity and microbial 

decomposition of autochthonous and 

allochthonous organic matter. The overall 

low dissolved oxygen content in the lake 

indicates eutrophic condition. Depletion of 

DO in water probably is the most frequent 

result of certain forms of water pollution 

(Najar, 2012; Srivastava et al., 2009). BOD 

indicates the amount of biologically-active 

organic matter, present in water (Sheela et 

al., 2011). It ranged between 7.23±1.5 mg/l 

and 12±2.2 mg/l, showing no significant 

variation among the seasons (F3= 1.48, P < 

0.05), though it varied substantially within 

the sites (F2= 11.02, P < 0.05). COD 

differed significantly within the sites (F2= 

37.73, P < 0.05); however, no significant 

variation was recorded among the seasons 

(F3= 1.25, P < 0.05) with a value between 

24.66±2 mg/l and 66±6 mg/l. BOD5 and 

COD are important parameters that 

indicate contamination with organic and 

inorganic wastes (Noori et al., 2011; Najar 

& Khan 2012b; Najar et al., 2014). 

Khuhawari et al. (2009) associated higher 

value of COD with increased 

anthropogenic pressures on lakes. 

 
 

 

Fig. 2a. pH, electrical conductivity, and temperature, recorded at different sites 
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Fig. 2b. Cation concentration at different sites 

 
 

 

Fig. 2c. Concentration of phosphorous, nitrate-nitrogen, and ammonical-nitrogen at different sites 
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Fig. 2d. Dissolved oxygen, biological oxygen demand, and chemical oxygen demand at different sites 

With the help of cluster analysis, 

similarity among the sampling sites during 

different seasons has been found out, 

resulting in a dendrogram (Fig. 3), in which 

all sampling sites have been grouped into 

three statistically-marked clusters. Since the 

present research has employed hierarchical 

agglomerative cluster analysis, the number of 

clusters is decided by water quality. Sites 

WTS2, ATS2, WTS1, and SPS2 form 

Cluster 1 which comprises low polluted sites 

(LP) that receive pollutants from non-point 

sources, mostly from agricultural and 

catchment runoff. Sites SMS1, SMS2, SPS1, 

and SMS3 that form Cluster 2 correspond to 

moderately polluted sites (MP), which 

receive pollutants mostly from point and 

non-point sources. The former includes 

domestic wastewaters while the latter 

consists agricultural and catchment runoff. 

Cluster 3, i.e. sites ATSI, SPS3, WTS3, and 

ATS3, corresponds to highly polluted sites 

(HP) which receive huge quantities of 

domestic wastewater. Cluster results 

revealed different physicochemical 

characteristics of water at each site, though 

Site-III remained highly polluted throughout 

the year, regardless of the season, as the site 

receives huge amount of wastewater mainly 

from municipal drains. 

Principal Component Analysis (PCA) has 

been applied to 13 variables for three 

sampling sites in order to identify variations 

in water quality. An eigenvalue greater than 

1 considered significant (Shrestha & 

Kazama, 2007) has been regarded as the 

main criterion for extracting principal 

components, required to explain the variance 

in the data. PCA application in order to 

extract and recognize the factors, responsible 

for water quality variations in four seasons of 

the year, resulted in four principal 

components for winter, summer, and 

autumn, and five principal components for 

spring, accounting to 79.58%, 89.07%, 

83.34%, and 93.13% of the total variance, 

respectively. Table 1 presents the different 

factors, total variance (%), cumulative 
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variance (%), and component loadings for 

the components of the principal components 

(PCs) analysis for different seasons. Liu et 

al., (2003) classified the factor loadings as 

“strong,” “moderate,” and “weak,” 

corresponding to absolute loading values of 

> 0.75, 0.75 - 0.50, and 0.50 - 0.30, 

respectively. Fig. 4 demonstrates Biplots 

(1+2 components) of factor loading during 

different seasons. 

Considering the dataset, related to winter 

season, among the four PCs, the PC1, 

explaining 23.97% of the total variance, has 

strong positive loading on Ca and Mg, and 

strong negative loading on EC (Table 1a). 

Najar and Khan (2012a) associated positive 

loading of Ca and Mg with parent rock 

materials in the catchment area. Negative 

loading of EC has been associated with 

lower temperature, as the solubility of salts 

decreases at lower temperature (Jyoti & 

Akhtar, 2007). PC2, explaining 22.93% of 

total variance, has a strong positive loading 

on Na, moderate positive loading on BOD5, 

K, and PO4-P, yet strong negative loading on 

DO. Positive loading on Na, K, and PO4-P 

has been associated with agricultural runoff 

(Juahir et al., 2011). PC3, explaining 

20.97%, of total variance has strong positive 

loading on COD and moderate positive 

loading on BOD5, K, NH4-N, and PO4-P. 

Positive loading on NH4-N, BOD5, and 

COD is associated with the influence of 

organic pollution from domestic wastewaters 

(Zhou et al., 2007). PC2 and PC3 represent 

pollution from domestic wastewaters and 

agricultural runoff. PC4, explaining 11.70 of 

total variance, has moderate positive loading 

on pH and strong negative loading on T. 

Negative loading of T has been associated 

with seasonal variation (Garg et al., 2010) 

and- at lower temperature- acid production is 

decreased, due to the decomposition of 

organic matter, hence PC1 and PC4 represent 

seasonal variation.   

 

Fig. 3. Dendrogram of cluster analysis for sampling stations during different seasons, based on the surface 

water quality of Anchar Lake 
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Fig. 4. Biplots of factor loadings for each variable during different seasons (1+2 component) 

 Table 1a. Factor loading values and explained variance of water quality during winter 

Parameter PC1 PC2 PC3 PC4 

BOD5 0.429 0.575 0.533 -0.260 

Ca 0.881 -0.177 -0.165 0.183 

COD 0.220 -0.070 0.900 -0.067 

DO -0.081 -0.935 0.198 0.216 

EC -0.779 -0.339 -0.322 0.172 

K 0.077 0.695 0.594 0.100 

Mg 0.889 0.200 0.256 0.029 

Na 0.427 0.757 0.379 -0.024 

NH4-N 0.086 0.105 0.501 0.046 

NO3-N -0.494 -0.294 -0.441 0.253 

pH 0.446 0.194 0.288 0.679 

PO4-P -0.212 0.578 0.596 0.098 

Temperature 0.143 0.245 0.128 -0.889 

Eigenvalues 3.117 2.981 2.727 1.521 

Total variance (%) 23.975 22.933 20.976 11.701 

Cumulative variance (%) 23.975 46.908 67.884 79.585 
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In case of spring, among the five PCs, 

PC1, explaining 38.03% of the total 

variance, has strong positive loading on 

BOD5, COD, Na, NH4-N, and NO3-N, as 

well as moderate positive loading on Ca 

and K (Table 1b). Strong positive loading 

of BOD5, COD, Na, NH4-N, and NO3-N 

has been linked with domestic wastewater 

(Iscen et al., 2008). PC1 represents organic 

pollution from domestic wastewaters. PC2, 

explaining 17.90% of total variance, has 

strong positive loading on PO4-P, moderate 

positive loading on Na and K, but strong 

negative loading on DO. PC3, explaining 

17.19% of the total variance, has strong 

positive loading on EC and strong negative 

loading on pH. PC2 and PC3 represent 

agricultural runoff factor as loading of 

PO4-P, Na, K, and EC are associated with 

agricultural runoff (Juahir et al., 2011; 

Najar, 2012). PC4, explaining 10.66% of 

total variance, has strong positive loading 

on Mg, being linked with parent rock 

materials in the catchment area (Singh et 

al., 2006). It represents catchment geology. 

Finally, PC5, explaining 9.32% of total 

variance, has strong positive loading on T 

and represents seasonal variation (Shrestha 

& Kazama, 2007). 

As for summer, among the four PCs, 

PC1, explaining 35.56% of the total 

variance, has a strong positive loading on 

BOD5, Mg, Na, and PO4-P, moderate 

positive loading on EC and NH4-N, and 

strong negative loading on DO (Table 1c). 

PC2, explaining 21.78% of total variance, 

has strong positive loading on K, moderate 

positive loading on COD and NH4-N, yet 

strong negative loading on T. Both PC1 

and PC2 represent domestic wastewater 

and agricultural runoff factor (Zhou et al., 

2007). PC3, explaining 19.87% of the total 

variance, has strong positive loading on 

COD, moderate positive loading on EC, 

and NO3-N, but strong negative loading on 

pH. Strong positive loading on COD, EC, 

and NO3-N has been associated with 

agricultural runoff (Buck, 2003). Thus PC3 

represents agricultural runoff factor. PC4, 

explaining 11.85% of the total variance, 

has strong positive loading on Ca, 

moderate positive loading of NH4-N, yet 

moderate negative loading on pH. Positive 

loading of Ca has been associated with 

catchment geology (Najar & Khan, 2012b). 

Thus PC2 represent organic pollution and 

catchment geology.   

 

Table 1b. Factor loading values and explained variance of water quality during spring 

Parameter PC1 PC2 PC3 PC4 PC5 

BOD5 0.836 0.202 -0.303 0.341 0.079 

Ca 0.675 -0.198 0.421 0.401 0.130 

COD 0.946 0.096 0.092 -0.152 0.001 

DO 0.289 -0.860 0.170 -0.189 0.206 

EC 0.296 -0.001 0.905 0.219 -0.131 

K 0.626 0.663 0.205 -0.014 0.265 

Mg 0.006 0.190 0.038 0.947 0.064 

Na 0.782 0.526 0.041 0.144 0.136 

NH4-N 0.885 0.034 0.367 -0.228 -0.127 

NO3-N 0.914 -0.060 0.202 0.085 -0.217 

pH -0.007 -0.122 -0.923 0.124 -0.125 

PO4-P 0.308 0.850 0.193 0.063 -0.017 

Temperature -0.061 -0.065 0.015 0.075 0.979 

Eigenvalues 4.944 2.328 2.236 1.387 1.213 

Total variance (%) 38.033 17.907 17.196 10.666 9.328 

Cumulative variance (%) 38.033 55.940 73.136 83.803 93.130 
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Table 1c. Factor loading values and explained variance of water quality during summer 

Parameter PC1 PC2 PC3 PC4 
BOD5 0.897 0.173 0.232 -0.085 

Ca 0.094 0.233 0.100 0.892 
COD 0.101 0.529 0.799 -0.019 
DO -0.953 0.191 0.025 -0.233 
EC 0.537 0.379 0.735 -0.081 
K -0.106 0.864 0.277 0.333 

Mg 0.795 0.031 -0.357 0.130 
Na 0.819 0.441 0.173 -0.146 

NH4-N 0.508 0.638 0.053 0.505 
NO3-N -0.249 0.242 0.650 0.068 

pH 0.172 0.135 -0.765 -0.516 
PO4-P 0.961 0.018 -0.221 0.034 

Temperature -0.124 -0.929 -0.218 -0.011 
Eigenvalues 4.623 2.832 2.583 1.541 

Total variance (%) 35.562 21.786 19.870 11.852 
Cumulative variance (%) 35.562 57.348 77.219 89.071 

 

For autumn, among the four PCs, PC1, 

explaining 33.07% of the total variance, has a 

strong positive loading on DO, NO3-N, and 

pH, but moderate positive loading on EC and 

strong negative loading on COD and 

temperature (Table 1d), which has been 

associated with seasonal variation (Najar et 

al., 2014; Shrestha & Kazama, 2007), thus 

PC1 represents seasonal variation factor. 

PC2, explaining 23.98% of total variance, has 

strong positive loading on Na, moderate 

positive loading on K, PO4-P, and Mg, but 

strong negative loading on Ca. PC3, 

explaining 13.51% of total variance, has 

strong positive loading on NH4-N and strong 

negative loading on EC. Positive loading on 

Na, K, PO4-P, and Mg is linked with 

agricultural runoff, whereas negative loading 

on EC has been associated with lower 

temperature as salt solubility is decreased at 

lower temperature (Najar & Khan, 2012a). 

PC2 and PC3 represent agricultural runoff 

factor with seasonal variation factor. PC4, 

explaining 12.76% of the total variance, has 

strong positive loading on BOD5 and 

moderate negative loading on DO. Both 

positive loading on BOD5 and negative 

loading on DO reveal discharge of domestic 

wastewaters (Iscen et al., 2008), hence PC4 

represents organic pollution. As a result, from 

the principal component/factor analysis it is 

clear that the organic pollution from domestic 

wastewaters, seasonal variation, agricultural 

runoff, and catchment geology and flow are 

significant factors contributing to water 

quality variations during different seasons. 

Table 1d. Factor loading values and explained variance of water quality during autumn 

Parameter PC1 PC2 PC3 PC4 
BOD5 -0.172 0.165 0.034 0.865 

Ca 0.024 -0.904 0.011 -0.059 
COD -0.843 0.319 0.107 0.234 
DO 0.754 -0.183 0.015 -0.610 
EC 0.507 0.046 -0.805 -0.033 
K -0.296 0.702 0.404 0.078 

Mg -0.120 -0.615 0.062 -0.349 
Na -0.262 0.851 0.209 0.257 

NH4-N 0.308 0.127 0.900 0.012 
NO3-N 0.941 -0.075 -0.053 0.065 

pH 0.923 0.112 -0.042 0.061 
PO4-P -0.165 0.652 -0.190 -0.410 

Temperature -0.839 0.288 -0.184 0.329 
Eigenvalues 4.300 3.118 1.757 1.660 

Total variance (%) 33.073 23.988 13.513 12.766 
Cumulative variance (%) 33.073 57.062 70.574 83.340 
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Hierarchical cluster analysis has grouped 

three sampling sites during four seasons into 

three clusters (LP, MP, and HP) based on 

water quality characteristics. Site-III 

remained highly polluted throughout the 

year, with the exception of summer, as the 

site receives huge amount of domestic 

wastewaters from immediate catchment. 

PCA application helped extracting and 

identifying the factors/sources, responsible 

for variation in water quality, during 

different seasons in the lake, which is 

mainly related to catchment geology, 

domestic wastewaters, agricultural runoff, 

and seasonal variation. These results may be 

valuable for lake-management authorities so 

that they can take strong actions for 

effective management of the lake. 

REFERENCES 
Ali, J., Tuzen, M. and Kazi, T.G. (2017). 

Determination of Arsenic in Water Samples by 

Using a Green Hydrophobic-Hydrophilic 

Switchable Liquid-Solid Dispersive 

Microextraction Method. Water Air Soil Pollut., 

228, 34. DOI 10.1007/s11270-016-3211-6. 

APHA (2005). Standard methods for the 

examination of water and wastewater. American 

Public Health Association, 21th edition, 

Washington DC. 

Bates, R.G. (1978). Concept and determination of 

pH. In: Kolthoff I M, Elving PJ (eds) Treatise on 

analytical chemistry (Part 1, Vol. 1. pp. 821). New 

York: Wiley-Interscience. 

Boyacioglu, H. and Boyacioglu, H. (2008). Water 

pollution sources assessment by multivariate 

statistical methods in the Tahtali Basin, Turkey. 

Environ. Geol., 54, 275-282.  

Brown, L. and Bellinger, E.G. (1978). Nitrate 

determination in fresh and some estuarine waters by 

ultraviolet light absorption: a new proposed method. 

Water Res., 12(4), 223-229. 

Buck, O., Niyogi, D.K. and Townsend, C.R. (2003). 

Scale-dependence of land use effects on water 

quality of streams in agricultural catchments. 

Environ. Poll., 130, 287-299. 

Edwards, G.P., Molof, A.H. and Schneeman, R.W. 

(1965). Determination of orthophosphate in fresh and 

saline waters. J. Am. Water Works Assoc., 57, 917. 

Garg, R.K., Rao, R.J., Uchchariya, D., Shukla, G. 

and Saksena, D.N. (2010). Seasonal variations in 

water quality and major threats to Ramsagar 

reservoir, India. Afr. J. Environ. Sci. Technol., 4(2), 

061-076. 

Iscen, C.F., Emiroglu, O., Ilhan, S., Arslan, N., 

Yilmaz, V. and Ahiska, S. (2008). Application of 

multivariate statistical techniques in the assessment 

of surface water quality in Uluabat Lake, Turkey. 

Environ. Monit. Assess., 144, 269-276. 

Jasper, W.S. (1988). Secondary standard potassium 

chloride conductivity solutions at 25°C. Corporate 

Metrology Laboratory, YSI Inc: Yellow Springs, 

Ohio. 

Juahir, H., Zain, S.M., Yusoff, M.K., Hanidza, 

T.I.T., Armi, A.S.M., Toriman, M.E., Mokhtar, M. 

(2011). Spatial water quality assessment of Langat 

River Basin (Malaysia) using environmetric 

techniques. Environ. Monit. Assess. 173, 625-641. 

Jyoti, M.K., Akhtar, R. (2007). Some limnological 

investigations of Sarkoot pond located in Kishtwar, 

district Doda, J&K State. J. Res. Dev., 7, 27-34. 

Katz, H., Navone, R. (1964). Methods for 

simultaneous determination of calcium and 

magnesium. J. Am. Water Works Assoc., 5, 121. 

Khuhawari, M.Y., Mirza, M.A., Leghari, S.M. and 

Arain, R. (2009). Limnological study of Baghsar 

Lake district Bhimber, Azad Kashmir. Pak. J. Bot., 

41(4), 1903-1915. 

Liu, C.W., Lin, K.H. and Kuo Y.M. (2003). 

Application of factor analysis in the assessment of 

groundwater quality in a blackfoot disease area in 

Taiwan. Sci. Total Environ., 313, 77-89. 

Loganathan, G., Krishnarajb, S., Muthumanickamb, 

J. and Ravichandran, K. (2015). Chemometric and 

trend analysis of water quality of the South Chennai 

lakes: an integrated environmental study. J. 

Chemometr., 29, 59-68. 

Mallick, D., Shafiqul, I.M., Talukder, A., Mandol, 

S., Imran, M.A. and Biswas, S. (2016).  Seasonal 

variability in water chemistry and sediment 

characteristics of intertidal zone at Karnafully 

estuary, Bangladesh. Pollut., 2(4), 411-423. 

Mancy, K.H. and Jaffe, T. (1966). Analysis of 

dissolved oxygen in natural and waste waters. Publ. 

No. 99-WP-37. U.S. Public Health Service: 

Washington, D.C. 

Najar, I.A. (2012). Studies on earthworm 

communities of Kashmir Valley, their application in 

management of fresh water weeds (macrophytes) 

and use of vermicompost in horticulture. Ph.D 

thesis, Pondicherry University. 

CONCLUSIONS 



Pollution, 3(3): 349-362, Summer 2017 

361 

Najar, I.A., Khan, A. B. and Hai, A. (2014). 

Changing climatic conditions and seasonal 

variability in surface water quality of a shallow 

valley lake, Kashmir, India. Proceeding of the 

international conference on Green India: Strategic 

knowledge for compacting climate change: 

prospects and challenges, Excel India Publishers, 

87-97. 

Najar, I.A., and Khan, A.B. (2013) Management of 

fresh water weeds (macrophytes) by 

vermicomposting using Eisenia fetida. Environ. Sci. 

Pollut. Res., 20:6406-6417.  

Najar, I.A., and Khan, A.B. (2012a). 

Vermicomposting of fresh water weeds 

(macrophytes by Eisenia fetida (Savigny, 1826), 

Aporrectodea caliginosa trapezoides (Duges, 1828) 

and Aporrectodea rosea rosea (Savigny, 1826). 

Dynamic Soil. Dynamic Plant., 6 (S1),73-77. 

Najar, I.A. and Khan, A.B. (2012b). Assessment of 

water quality and identification of pollution sources 

of three lakes in Kashmir, India, using multivariate 

analysis. Environ. Earth Sci., 66(8), 2367-2378. 

Najar, I.A. and Khan, A.B. (2012c). Assessment of 

seasonal variation in water quality of Dal Lake 

(Kashmir, India) using multivariate statistical 

techniques. Conference on Water Pollution-XI: 

Modeling, Monitoring and Management, WIT 

Trans. Ecol. Environ., 164, 123-134. 

Najar, I.A. and Khan, A.B. (2011). Assessment of 

pollution status of Khushalsar Lake, Kashmir, India 

using multivariate statistical techniques. Pollut. 

Res., 30(2), 131-136. 

Noori, R., Yeh, H., Ashrafi, K., Rezazadeh, N., Bateni, 

S.M., Karbassi, A., Kachoosangi, F. T. and Moazami, 

S. A. (2015). Reduced-order based CE-QUAL-W2 

model for simulation of nitrate concentration in dam 

reservoirs. J. Hydrol., 530, 645-656.  

Noori, R., Karbassi, A., Khakpour A, 

Shahbazbegian M, Badam H.M.K. and Vesali-

Naseh, M. (2012). Chemometric Analysis of 

Surface Water Quality Data: Case Study of the 

Gorganrud River Basin, Iran. Environ. Model. 

Assess., 17, 411-420. 

Noori, R., Karbassi, A.R., Ashrafi, K., Ardestani, M. 

and Mehrdadi, N. (2011). Development and 

Application of Reduced-Orde Neural Network Model 

Based on Proper Orthogonal Decomposition for 

BOD5 Monitoring: Active and Online Prediction. 

Environ. Progr. Sust. Energy., 32(1), 120-127. 

Noori, R., Sabahi, M. S., Karbassi, A. R., 

Baghvand, A., and Taati-Zadeh, H. (2010). 

Multivariate statistical analysis of surface water 

quality based on correlations and variations in the 

data set. Desalination., 260(1-3), 129-136. 

Papatheodorou, G., Demopoulou, G. and 

Lambrakis, N. (2006) A long-term study of 

temporal hydrochemical data in a shallow lake 

using multivariate statistical techniques. Ecol. 

Model., 193, 759-776. 

Parmar, K.S. and Bhardwaj, R. (2013). Water 

quality index and fractal dimension analysis of 

water parameters. Int J Environ. Sci. Technol., 

10(1), 151-164. 

Pitwell, L.R. (1983). Standard COD. Chem. Brit., 

19, 907. 

Rajbira, K. and Anishb, D. (2016). Assessment of 

Water Quality of Tung Dhab Drain-An 

International Water Channel-Using Multivariate 

Statistical Techniques. Asian J. Water Environ. 

Pollut., 13(3), 85-93. 

Ramachandra, T. V., Asulabha, K. S. and Lone, A. 

A. (2014). Nutrient Enrichment and Proliferation of 

Invasive Macrophytes in Urban Lakes. J 

Biodiversity, 5(1,2), 33-44. 

Ree, W.R. (1953). Thermistors for depth 

thermometry. J. Am. Water Works Assoc. 45, 259.  

Sheela, A.M., Letha, J. and Joseph, S. (2011). 

Environmental status of a tropical lake system. 

Environ. Monit. Assess., 180, 427-449. 

Shin, M.H., Won, C.H., Jang, J.R., Choi, Y.H., 

Shin, Y.C., Lim, K.J. and Choi, J.D. (2013). Effect 

of surface cover on the reduction of runoff and 

agricultural NPS pollution from upland fields. 

Paddy Water Environ., 11, 493-501. 

Shrestha, S. and Kazama, F. (2007). Assessment of 

surface water quality using multivariate statistical 

techniques: A case study of the Fuji river basin, 

Japan. Environ. Model. Softw., 22(4), 464-475. 

Simeonova, P., Lovchinov, V., Dimitrov, D. and 

Radulov, L. (2010). Environmetric approaches for 

lake pollution assessment. Environ. Monit. Assess., 

164, 233-248. 

Singh, K.P., Malik, A., Singh, V.K., Basant, N. and 

Sinha, S. (2006). Multi-way modeling of hydro-

chemical data of an alluvial river system- A case 

study. Anal. Chim. Acta., 571, 248-259. 

Solorzano, L. (1969). Determination of ammonia in 

natural waters by the phenolhypochlorite method. 

Limnol Oceanogr., 14, 799. 

Srivastava, N., Harit, G.H. and Srivastava, R. 

(2009). A study of physico-chemical characteristics 

of lakes around Jaipur. India J. Environ. Bio., 30(5), 

889-894. 



Ishtiyaq, A.N. et al. 

 
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)" 

362 

Takaijudin, H., Ghani, A.A. and Zakaria, N.A. 

(2016). Challenges and developments of 

bioretention facilities in treating urban stormwater 

runoff; A review. Pollut., 2(4), 489-508. 

Thompson, K.C. and Reynolds, R.J. (1978). Atomic 

absorption, fluorescence, and flame spectroscopy-a 

practical approach, 2nd edn. John Wiley and Sons: 

New York. 

Tian, P., Zhao, G., Li, J., Gao, J. and Zhang, Z. 

(2012). Integration of monthly water balance 

modeling and nutrient load estimation in an 

agricultural catchment. Int .J. Environ. Sci. 

Technol., 9(1), 163-172. 

Virkutyte, J. and Sillanpää, M. (2006). Chemical 

evaluation of potable water in Qingshai province, 

China: Human Health Aspects. Environ. Int., 32(1), 

80-86. 

Vyas, A., Mishra, D.D., Bajapai, A., Dixit, S. and 

Verma, N. (2006). Environment Impact of Idol 

Immersion Activity Lakes of Bhopal, India. Asian 

J. Expl. Sci., 20(2), 289-296. 

Wong, K.W., Yap, C.K., Nulit, R., Hamzah, M.S., 

Chen, S.K., Cheng, W.H., Karami, A. and Al-

Shami, S.A. (2017). Effects of anthropogenic 

activities on the heavy metal levels in the clams and 

sediments in a tropical river. Environ. Sci. Pollut. 

Res., 24, 116-134. 

Yidanaa, S.M., Ophoria, D. and Yakubo, B.B. 

(2008). A multivariate statistical analysis of surface 

water chemistry data-The Ankobra Basin, Ghana. J. 

Environ. Manage., 86, 80-87. 

Zar, J.H. (2009). Biostatistical analysis, 5th. edition. 

Prentice Hall: Englewood Cliffs, New Jersey.   

Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, 

Q., Wang, Y. and Ye, F. (2009). Assessment of 

surface water quality using multivariate statistical 

techniques in red soil hilly region: a case study of 

Xiangjiang watershed, China. Environ. Monit. 

Assess., 152, 123-131. 

Zhou, F., Guo, H.C. and Liu, L. (2007). 

Quantitative identification and source 

apportionment of anthropogenic heavy metals in 

marine sediment of Hong Kong. Environ. Geol., 

53(2), 295-305. 




