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ABSTRACT: The association of the emergence of bacterial resistance to clinical 
environments is common; however, aquatic environments, especially the polluted ones, 
also play a key role in this regard. Aquatic environments can act as facilitator for the 
exchange of mobile elements, responsible for resisting antibiotics. They even may 
stimulate the emergence and selection of these elements through contaminants or the 
natural competition between bacterial phyla. Currently there is a large number of highly-
reliable resistance genes, which is selected in aquatic environments, mostly due to several 
types of pollution, such as the mcr-1 gene that causes resistance to one of the antibiotics, 
available in the market, namely colistin. Thus, the present review aims to show a range of 
impacts capable of selecting bacterial resistance in the environment, thus clarifying this 
environment's role in dispersion of resistance. 
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INTRODUCTION

 

When thinking about the interaction between 

bacteria and water, it is common to talk 

about contamination, since it is responsible 

for turning a great part of world’s drinking 

water inappropriate for consumption; 

however, there is another problem associated 

with that interaction, to wit the appearance 

and facilitation of horizontal transference of 

resistance genes (Baquero et al., 2008; Hsu et 

al., 2014; Wintersdorff, von et al., 2016; Xu, 

J. et al., 2015). 

It is common to associate emergence of 

bacterial resistance with the selective 

pressure they undergo in a hospital 
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environment, wherein there is a constant use 

of antibacterial drugs in treatment of 

different infectious processes (Hsueh et al., 

2005). Nevertheless, many studies have 

already proven that a lot of resistance genes 

are also present in environments outside the 

hospitals, such as aquatic ecosystems  

(Finley et al., 2013; Wellington et al., 2013; 

Xiong et al., 2015). As a result, bacteria 

responsible for carrying these genes may be 

directly connected with the resistance 

occurring frequently in hospitals (Czekalski 

et al., 2014; Huerta et al., 2013). 

Emergence of Resistance in Aquatic 
Environment 
In aquatic environments, resistance can 

occur through selective pressure imposed 
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many times by human beings when 

contaminating these bodies of water with 

wastes that mainly contain heavy metals as 

well as remnants of antibacterial drugs 

(Furukawa et al., 2015; Gullberg et al., 

2014). These drugs can reach the 

environments via various routes such as 

flow of rain water with remnants of drugs, 

used by agriculture, to rivers, lakes, and 

wells; absence of any treatment of human 

wastes containing antibacterial drugs along 

with its direct disposal into bodies of 

water; and the use of antibiotics in 

agriculture. This selective pressure, though 

not as intense as that of a hospital 

environment, may also exert its effects 

(Forsberg et al., 2014; Gibson et al., 2014). 

Aquaculture 
Aquaculture is the rearing of aquatic 

animals, used for human consumption, in 

controlled environments, such as lakes, 

rivers, and seas. The use of antibiotics has 

become unruly and frequent in this type of 

practice, as manipulation of animals causes 

a high level of stress in them, leading to 

weaker immune system and, consequently, 

higher sensibility to bacterial infection. To 

prevent this problem, many aquaculture 

owners use prophylactic antibiotics in 

order that the bacteria could struggle to 

grow in the treated water (Huang, Y. et al., 

2015; Shah et al., 2014). 

Many aquaculture practices are found in 

connection to large bodies of water, which 

facilitates the dispersion of the drugs used 

in excess along with the resistance-carrying 

bacteria, leading to a situation in which a 

resistance gene that occurs in one specific 

place can spread for kilometers (Cabello et 

al., 2016; Muziasari et al., 2016; Tomova 

et al., 2015). 

Such excessive use of antibiotics has 

already collected its toll. There are already 

reports of pathogens in many species of 

fish and other aquatic animals, resistant to 

lots of medications meant to combat them 

(Muziasari et al., 2016). The appearance of 

resistance among these pathogens is 

preoccupying, for it makes rearing aquatic 

animals more difficult, due to both 

infections and the possibility of occurrence 

of these genes' horizontal transference in 

bacteria, pathogenic to humans (Muñoz-

Atienza et al., 2013; Xiong et al., 2015). 

As the population grows, new forms of 

food production tend to grow as well, one 

of which is aquaculture which needs a 

better way of regulating the use of 

antibiotics (Rico & Brink, Van den, 2014). 

Agriculture and Animal Waste 
Antibiotics are commonly used to aliment 

animals throughout the world, generally to 

prevent or treat diseases (Wang, L. et al., 

2015). The major problem with this practice 

is that it goes unchecked, without a correct 

dosage control , which leads to the 

accumulation of these medications in these 

animals' urine and feces (Zhang et al., 2015; 

Zhu et al., 2013). Other elements, found in 

animal wastes, include the heavy metals, 

such as cadmium, arsenic, mercury, and zinc 

(Hölzel et al., 2012). When not correctly 

disposed, these metabolic residues end up in 

bodies of water, taking with them a great 

deal of antibiotics (Ji et al., 2012). Such a 

large volume of antibiotics and heavy metals 

stimulates the selection of resistant bacteria, 

which is followed by horizontal transference 

of the genes (Martins et al., 2014). 

Hospital Effluents 
The residual water form hospitals is certainly 

an important source of pathogenic organisms 

and genes, resistant to antibiotics. It is then 

released into the environment, since these 

effluents transport chemical and biological 

substances, including the active principle of 

many medications and their metabolites, 

chemical products, nutrients, and bacteria 

with their resistant genes (Hocquet et al., 

2016; Laffite et al., 2016; Stalder et al., 

2014). In aquatic environments, a great part 

of the bacterial community is found 

aggregated, forming a biofilm on the surface. 

Such biofilms are considered an ideal place 
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for genes' horizontal transference to occur, 

resulting in the dissemination of resistance to 

antibiotics (Ory et al., 2016). Integrons, 

found in hospital effluents, codify the 

resistance to many different types of 

antibiotics. Present in bacterial communities, 

these Integrons increase the meta-genomic 

plasticity of the said communities, enhancing 

their evolution (Simo Tchuinte et al., 2016; 

Stalder et al., 2014; Vaz-Moreira et al., 

2016). The Integrons may be involved in the 

dissemination of resistance in clinical 

environments, being a participant in the 

genetic exchange of resistant genes in 

different ecosystems (Gillings, 2014). 

Natural Competition 
Another way for resistance to appear in the 

environment is through natural competition 

(Hibbing et al., 2010). Considering that great 

part of antimicrobials, utilized by man, is 

extracted from bacteria or based on 

substances, produced by them, it is possible 

for the emergence of resistance to begin as a 

kind of self-defense in the struggle for 

perpetuation of the species (Koch et al., 

2014; Vargas-Bautista et al., 2014). In 

general, aquatic environments possess a very 

diverse bacterial community, resulting in a 

constant dispute, mainly for nutrients 

(Wanjugi & Harwood, 2013). It is during 

these disputes that antibiotics are produced 

with the aim of inhibiting the growth of other 

species (Audrain et al., 2015; Gerdt & 

Blackwell, 2014). This form of resistance 

appears regardless to the contamination of 

the locale in which the bacteria are found 

(Koch et al., 2014). 

Heavy Metals and Industries 
There are many sources of heavy metals that 

contaminate the environment and bacterial 

resistance might be linked to contamination 

of these metals, which acts as indirect agents 

of selection, likely to play an important role 

in the proliferation of resistance to 

antibiotics. One of these is co-resistance (Pal 

et al., 2015; Yazdankhah et al., 2014). Co-

resistance occurs when genes that codify 

resistant phenotypes are located in the same 

genetic element, such as the plasmid (Baker-

Austin et al., 2006; Hobman & Crossman, 

2015). Genes of resistance to metals and 

antibiotics are specifically linked to 

plasmids, which can result in a co-selection 

of resistance to both antibiotics and metals. 

This co-selection might be derived from 

various contaminated environments with 

great quantities and varieties of metals, in 

which bacteria resistant to both metals and 

antibiotics could be present. There is no 

direct evidence for co-selection of resistance 

to antibiotics through exposure to metals; 

however, this hypothesis is studied thanks to 

the frequency that resistance to antibiotics 

and metals is found in the same bacteria 

(Bruins et al., 2000; Verma et al., 2001). 

Dispersion of Resistance in Aquatic 
Environments 
Phenomena such as genetic exchange and 

natural selection can explain the increase in 

bacterial resistance (Hu et al., 2015). The 

exchange of genes between these organisms 

(via plasmids, transposons, and integrons) 

can occur by bacterial conjugation, 

transformation, or transduction. In these 

cases, such genes can confer different 

resistance mechanisms to these bacteria, 

including inactivation of antibiotic action, 

reduction of intracellular concentration of 

antibiotics due to efflux pumps, reduction of 

the cellular membrane’s permeability, and 

alteration of the antibiotic target, making the 

association of the antimicrobial more 

difficult (Brown-Jaque et al., 2015; Stone et 

al., 2016). 

The aquatic environment is a facilitator 

of the exchange of mobile genetic elements, 

because the movement of bacteria is easier 

when compared with a dry environment 

(Berglund et al., 2014; Mao et al., 2014). 

The presence of an elevated number of 

microorganisms with those bacteria that 

present some sort of resistance enables quite 

frequent exchanges of genetic elements that 

codify resistance to antibiotics (Yang, C.-

W. et al., 2014). Through such contact, 
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many bacteria, not previously resistant, may 

come to exist through a phenomenon called 

“acquired resistance”. Events such as these 

are important for the diffusion of 

antimicrobial resistance (Gibson et al., 

2015; Marathe et al., 2013). 

Risks and Costs of Bacterial Resistance 
According to the data from World Health 

Organization (WHO), divulged in May 

2014, infections are the main cause of 

death in low-income countries and the third 

leading cause worldwide. Majority of such 

deaths is caused by bacteria with some sort 

of resistance to antibiotics (World Health 

Organization, 2015). 

Bacterial resistance is considered a 

public health issue throughout the world, 

and for that, studies investigating 

resistance mechanisms are necessary since 

they contribute to a better understanding of 

the said mechanisms and their consequence 

on human health (Nathan & Cunningham-

bussel, 2013; Roca et al., 2015), because 

the complex system of bacterial resistance 

and its wide dissemination increasingly 

reduces available therapeutic options, 

leading to increased mortality (Molton et 

al., 2013; Sorlozano et al., 2014). 

Infections, caused by resistant bacteria, 

impose high costs when treating the infected 

patient. A good example of this is the 2013 

report by the Center for Disease Control 

(CDC) in the United States, which indicates 

that the expenses of treatments, related to 

resistant bacteria, are approximately USD 35 

billion annually, and the total cost, 

considering the loss of productivity due to 

the time period of patient internment, is USD 

55 billion each year (Dantas & Sommer, 

2014; Manning et al., 2016). According to 

data from Economic Forum of Global Risks, 

in the European Union 25,000 people die 

each year due to complications, caused by 

resistant bacteria, with the relevant costs 

reaching up to EUR 1,5 billion annually 

(World Economic Forum (WEF) 2013; 

Jørgensen, 2016). These numbers estimate 

that resistance to antibiotics will be one of 

the greatest social and economic problems 

that humanity will face in the coming years, 

due to number of deaths and elevated 

treatment costs (Barriere, 2015). 

Studies that evaluate the prevalence of 

multi-resistant bacterial infections in 

hospitals are common. However, there have 

been increasing researches on resistant 

bacteria in community infections, which 

shows that the spread of these organisms to 

other environments are related to human 

healthcare (Economou & Gousia, 2015; 

Tschudin-Sutter et al., 2013). A number of 

these studies show that there might be a close 

relation between resistant genes that appear 

in the environment with those, present in 

hospitals, making them important for 

healthcare (Shah et al., 2014; Stalder et al., 

2014). Even though the number of patients, 

infected with resistant pathogens in the 

community, is not as high as that of 

hospitals, they demand attention, because 

these patients can contribute to the 

dissemination of resistance to healthcare 

environments, contributing to its propagation 

(He, L.-Y. et al., 2016).  

Main Resistance Genes 
Table 1 demonstrates that there is an already 

documented relation between resistance 

genes, found in aquatic environments, and 

those, found in medical environments. 

Various genes are of high importance, since 

they codify resistance to a variety of 

antibiotics, relevant in clinical treatment, 

such as Vancomycin (vanA), beta-lactams 

(blaTEM, blaCTX-M e blaGES-5), and e colistin 

(mcr-1). It is worth noting that mcr-1 can 

already be found in the environment, given 

that it is responsible for resistance to 

Colistin, a potent antibiotic, used in cases of 

multi-resistant bacteria that do not respond 

to other antimicrobial therapies (Levin et 

al., 1999; Shiban et al., 2014). 

Given the potency of Colistin, for many 

years it was considered that resistance to it 

would hardly appear, though in 2016,  the 
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gene for resistance to Colistin was found 

among pigs in China, its horizontal 

dissemination being described for the first 

time via plasmid (Liu, Y.-Y. et al., 2016). 

The fact that this gene is already found in 

aquatic environments shows two things: 

first, that it is easily disseminated, and 

second, that aquatic environments may have 

a relevant role in future dispersion (Liu, Y.-

Y. et al., 2016; Ovejero et al., 2017). 

Table 1. Relationship between the aquatic and clinical environment 

 Research in aquatic environment Research in clinical environment 

Genes REFERENCE REFERENCE 

aadA1 (Canal et al., 2016) (Lindstedt et al., 2003) 

ampC (Capkin et al., 2015) (Paltansing et al., 2015) 

tetM (Chen, B. et al., 2015) (Croucher et al., 2011) 

tetA (Cesare, Di et al., 2015) (Ahn et al., 2016) 

blaCTX-M (Conte et al., 2017) (Abdi et al., 2014) 

sul1 (Huang, L. et al., 2017) (Manyahi et al., 2017) 

qnrS (Proia et al., 2016) (Yugendran & Harish, 2016) 

sul2 (Rowe et al., 2016) (Teichmann et al., 2014) 

mecA (Seyedmonir et al., 2015) (Carlesse et al., 2016) 

blaTEM (Stange et al., 2016) (Leverstein–van Hall et al., 2002) 

vanA (Young, S. et al., 2016) (Phukan et al., 2016) 

blaGES-5 (Manageiro et al., 2014) (Ribeiro et al., 2014) 

qnrA (Rafraf et al., 2016) (Wu, J.-J. et al., 2007) 

ermB (Proia et al., 2016) (Chu et al., 2015) 

mcr-1 (Zurfuh et al., 2016) (McGann et al., 2016) 

aadA1 (Canal et al., 2016) (Lindstedt et al., 2003) 

ampC (Capkin et al., 2015) (Paltansing et al., 2015) 

tetM (Chen, B. et al., 2015) (Croucher et al., 2011) 

tetA (Cesare, Di et al., 2015) (Ahn et al., 2016) 

blaCTX-M (Conte et al., 2017) (Abdi et al., 2014) 

sul1 (Huang, L. et al., 2017) (Manyahi et al., 2017) 

qnrS (Proia et al., 2016) (Yugendran & Harish, 2016) 

sul2 (Rowe et al., 2016) (Teichmann et al., 2014) 

mecA (Seyedmonir et al., 2015) (Carlesse et al., 2016) 

blaTEM (Stange et al., 2016) (Leverstein–van Hall et al., 2002) 

vanA (Young, S. et al., 2016) (Phukan et al., 2016) 

blaGES-5 (Manageiro et al., 2014) (Ribeiro et al., 2014) 

qnrA (Rafraf et al., 2016) (Wu, J.-J. et al., 2007) 

ermB (Proia et al., 2016) (Chu et al., 2015) 

mcr-1 (Zurfuh et al., 2016) (McGann et al., 2016) 

 

CONCLUSION  
A better understanding of the ecologic role, 

portrayed by that aquatic environments, in 

the appearance of antibiotic resistance may 

help comprehending the evolution and 

dissemination of these mechanisms and 

contribute to the elaboration of policies 

that orient an appropriate management of 

hospital and industrial waste disposal. 

Every study that aims at increasing the 

knowledge and/or reducing the dispersion 

of bacterial resistance is commendable, 

given that at the moment it is not possible 

to gain a better perspective of this grave 

problem in world public health.  

One way to mitigate these problems 

would be investment in sanitation policies, 

aimed at collecting and treating more 

efficient sewage. As a result the amount of 

antimicrobials to reach the aquatic bodies 

would be vigorously decreased. 
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