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ABSTRACT: The transport mechanism of contaminated groundwater has been a 
problematic issue for many decades, mainly due to the bad impact of the contaminants on 
the quality of the groundwater system. In this paper, the exact solution of two-
dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous 
media with spatially dependent initial and uniform/flux boundary conditions. The flow 
velocity is considered temporally dependent in homogeneous media however, both 
spatially and temporally dependent is considered in heterogeneous porous media. First-
order degradation term is taken into account to obtain a solution using Laplace 
Transformation Technique (LTT) for both the medium. The solute concentration 
distribution and breakthrough are depicted graphically. The effect of different transport 
parameters is studied through proposed analytical investigation. Advection-dispersion 
theory of contaminant mass transport in porous media is employed. Numerical solution is 
also obtained using Crank Nicholson method and compared with analytical result. 
Furthermore, accuracy of the result is discussed with root mean square error (RMSE) for 
both the medium. This study has developed a transport and prediction 2-D model that 
allows the early remediation and removal of possible pollutant in both the porous 
structures. The result may also be used as a preliminary predictive tool for groundwater 
resource and management. 

Keywords: ADE, Aquifer, Solute, Analytical solution, Numerical Solution. 

 
 
 
INTRODUCTION


 

The transport and fate of solutes in the 

subsurface region has been major research 

area in the environmental, hydrological and 

soil-sciences. The contaminant sites pose a 

threat to the subsurface water system, 

surface water ecosystem, drinking water 

supplies, soils, and human health. Hence 

there is a need to provide fast contaminant 

remediation and quality monitoring of the 
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groundwater system. Contaminant transport 

due to advection and dispersion in a porous 

medium is traditionally modeled by 1-D, 2-

D and 3-D ADE with appropriate initial and 

boundary conditions. Advection-dispersion 

theory (ADT) is extensively explored 

through analytical solution, numerical 

simulation and experimental investigations 

of homogeneous and heterogeneous media 

during the mid-20
th

 century.  

Now a day contaminant transport 
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modeling draw full attention to discuss 

various issues such as solute behaviour, 

concentration pattern etc., through numerical 

models, analytical models or both. 

Numerical and analytical solutions have its 

own limitation although these solutions are 

very much relevant for predicting 

contaminant concentration behaviour. 

Analytical solution provides closed form 

solution but it is usually limited with regard 

to the complexity only. These solutions are 

useful for benchmarking the numerical codes 

and solutions and even reduce computational 

effort as well. Accordingly, many one-

dimensional analytical solutions were 

developed. Analytical solution of solute 

transport model equation (STME) was 

studied with temporally dependent 

dispersion coefficient (Logan, 1996; Maraqa, 

2007; Kazezyılmaz-Alhan, 2008; Kumar et 

al., 2009; Singh et al., 2009; Hayek, 2016; 

Van Duijn & Van Der Zee, 2018). Also, the 

exact and approximate solutions of the one-

dimensional advection-dispersion equation 

was explored in a heterogeneous porous 

media with a spatially dependent dispersion 

coefficient (Yates, 1992). The solution was 

obtained for a constant/flux boundary 

condition with asymptotic and exponential 

dispersion coefficients. Also, for a one-

dimensional domain an analytical solution 

was provided for infinite domain and four 

different types of temporally dependent 

dispersion coefficients (Basha & El-Habel, 

1993). 

Two-dimensional situations were 

investigated for finite and infinite domains 

and diverse options for decay and sorption 

kinetics (Park & Zhan, 2001; Tadjeran & 

Meerschaert, 2007; Singh et al., 2010; Wang 

& Huang, 2011; Khebchareon, 2012; Cremer 

et al., 2016). An exact solution of the two-

dimensional ADE was provided with a time 

dependent dispersion coefficient. 

Instantaneous and continuous point-source 

solutions were explored for constant, linear, 

asymptotic and exponentially varying 

dispersion coefficients (Aral & Liao, 1996). 

A two-dimensional analytical solution of the 

ADE was presented with velocity dependent 

dispersion in an isotropic medium and with a 

constant/zero flux boundary condition 

(Broadbridge et al., 2002). Transient 

groundwater flow was discussed analytically 

and numerically with spatially dependent 

parameters in heterogeneous anisotropic 

porous medium (Belyaev et al., 2007).  

In groundwater systems, a special case of 

two-dimensional transport is formed by 

aquifer-aquitard interactions and investigated 

the two-dimensional STME i.e., an aquifer-

aquitard system by an averaged 

approximation method with first and third 

type boundary conditions (Zhan et al., 2009). 

They assumed longitudinal and transversal 

dispersions in the aquifer and vertical 

advection and diffusion in the aquitard (Tang 

et al.,1981). Applying a power series 

technique, an analytical solution of the two-

dimensional ADE was derived with linear 

space-dependent dispersivities in both 

directions of a uniform flow field (Chen et 

al., 2008). For first- and third-type boundary 

conditions, an exact analytical solution were 

derived for the two-dimensional ADE in a 

cylindrical co-ordinates system and a finite 

domain (Chen et al., 2011). A new matrix 

technique was developed to solve the 2-D 

time dependent diffusion equation with 

Dirichlet type boundary conditions (Zogheib 

& Tohidi, 2016). Recently, using Green’s 

Function Method (GFM), an analytical 

solution of the two-dimensional ADT was 

proposed with space and time dependent 

longitudinal and transversal component of 

the velocity and dispersion coefficient for 

infinite horizontal groundwater flow 

(Sanskrityayn et al., 2018). 

Aim of this paper is to investigate 

analytically for the two-dimensional solute 

transport equation in a confined semi-infinite 

domain. Flow domain is considered either 

homogeneous or heterogeneous with 

transient water flow velocities. The 

retardation factor that represents linear 

adsorption/desorption is also considered. The 
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closed form analytical solution of the two-

dimensional advection dispersion equation is 

derived by Laplace Transform Technique for 

a semi-infinite flow domain with spatially 

dependent initial and uniform/flux boundary 

conditions. In addition, analytical solution is 

compared with numerical solution obtained 

by Crank-Nicolson (CN) method. Accuracy 

of the results is discussed using root mean 

square error (RMSE). 

Mathematical Modelling for Homogeneous 
and Heterogeneous Media 
Two-dimensional ADE is considered to 

simulate solute contaminant transport in 

groundwater with a source in the horizontal 

plane at the origin of the domain (Figure 

1). The semi-infinite length of impervious 

boundary is considered along the x- and y- 

directions. The origin of the Cartesian 

coordinate system is fixed for site of the 

contaminant plume. We have assumed that, 

the steady and unidirectional groundwater 

flow is horizontal i.e., along the x- 

direction. The solute concentration in the 

groundwater reservoir is assumed to be 

constant at the beginning of contaminant 

transport. In the Cartesian co-ordinate 

system with uniform velocity, the transient 

two-dimensional advection dispersion 

equation with solid-liquid phase is 

formulated as 

*

l d s l l
xx xy x l

l l d
yx yy y l l s

c c c c
D D u c

t t x x y

c c
D D u c c c

y x y






 



    
     

     

  
    

   

 
(1) 

where, c1 [ML
-3

] is the liquid phase 

concentration, cs [MM
-1

] is the sorbed mass 

of solute contaminant in solid phase, 

Dxx[L
2
T

-1
] and Dyy [L

2
T

-1
] are the dispersion 

coefficient components in principle 

direction, Dxy [L
2
T

-1
] and Dyx [L

2
T

-1
] are the 

cross dispersion coefficient components, 

ux[LT
-1

] and uy[LT
-1

] are the seepage 

velocity components in principle direction, 

 [T
-1

] and *
 [T

-1
]  are the first order decay 

rate for the liquid and solid phases 

respectively, d [ML
-3

] is the density of the 

porous media and [-] is the porosity of 

geological media. 

 

Fig. 1. A schematic diagram of two-dimensional contaminant transport model. 
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When contaminated groundwater flow 

is in reservoir, some solute components, 

such as polar organic solute compounds, 

heavy metals components, macromolecules 

particles and biogenic substance are sorbed 

by the solid phase. The sorption 

mechanism may include ionic exchange, 

physical adsorption and chemisorptions. A 

fundamental property of sorption system is 

the existence of equilibrium between solid 

and liquid phases, i.e., there exists the 

mathematical relationship as follows: 

    , ,s lc x t f c x t  (2) 
For linear equilibrium adsorption, 

transport equation can be re-written as 

follows; 

*

l l l
xx xy x l

l l d
yx yy y l l s

c c c
R D D u c

t x x y

c c
D D u c c c

y x y


 



   
    

    

  
    

   

 
(3) 

where, 1 d
fR k




   is retardation factor. 

The groundwater flow field is uniform 

in a semi-infinite porous formation. 

Initially the domain contains solute with a 

spatially dependent function. A constant 

source is taken into consideration at the 

origin. Thus, initial and boundary 

conditions are written as follows: 

    , ,0 exp  l ic x y c x y

0, 0, 0  x y t  
(4a) 

  00,0, lc t c    0, y 0, 0  x t
 

(4b) 

0l

x

c

x 

 
 

 
and 0l

y

c

y


 
 

    

0t 
 (4c) 

where, ci [ML
-3

] is the input source 

concentration and c0 [ML
-3

] is the uniform 

source concentration. 

The effect of molecular diffusion is 

extended only due to the mechanical 

dispersion dominates the hydrodynamics 

dispersion process in solute transport 

mechanism. Instead, solute spreading in the 

isotropic medium is characterized by a 

dispersion tensor ijD (Zheng & Bennett, 

2002). Dispersion tensor can be estimated by 

  2

2 2

,

| |

i j

ij T ij L T

x y

u u
D U

U

U u u

 
      
 

 
 

and (i, j)  (x, y)  

(5) 

where L and T are longitudinal and 

transversal dispersivity parameter of porous 

media. ij 
is defined by 0,

1,
ij

if i j

if i j


  



. 

In this study, we considered the flow of 

water to be uniform throughout the 

medium and in horizontal direction only 

and therefore in two-dimensional cases, 

cross dispersion component can be 

neglected. Hence Eq. (5) reduces to  

,xx L yy TD U D U    and

0xy yxD D   (6) 

Case I. For a homogeneous porous 

formation, we assumed two components of 

the velocity vector which are temporally 

dependent as follows: 

 
0x xu u mt and  

0y yu u mt  (7) 
where ux0 [LT

-1
] and uy0 [LT

-1
] are initial 

seepage velocity components in the two 

principal directions i.e., x and y, 

respectively, m [T
-1

] is the flow resistance 

coefficient and  (mt) is non-dimensional 

expression in the time variable. 

It is common to assume that the 

mechanical dispersion coefficient (D) for 

homogeneous porous media varies nearly 

with the second power of seepage velocity 

(Bear, 1972). Hence, we obtained as 

 
0

2

xx xxD D mt and

 
0

2

yy yyD D mt  
(8) 

where Dxx0[L
2
T

-1
] and Dyy0[L

2
T

-1
]  are the 

initial principal direction dispersion 

coefficient components, respectively.  
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Using Eq. (7) and Eq. (8), Eq. (3) can be 

written as follows: 

 
 

 

0

0 0 0

2

2

2

02

l l
xx

l l l
yy x y l

c cR
D mt

mt t x

c c c
D mt u u w c

y x y






 
 

 

  
  

  
 

(9) 

where,
 

0
mt







, 
 

*
*

0
mt





  and *

0 0 0  d
fw k


 


 

By introducing a new time variable  

 1 1

0

t

T mt dt   (10) 

Eq. (9) can be written as follows: 

 

 

0

0 0 0

2

2

2

02

l l
xx

l l l
yy x y l

c c
R D mt

T x

c c c
D mt u u w c

y x y





 
 

 

  
  

  
 

(11) 

Introducing also a new space variable 

(Carnahan & Remer, 1984; Sanskrityayn & 

Kumar, 2018) 

Z x y    (12) 
Eq (11) can be simplified as 

 
2

0 0 02

l l l
l

c c c
R D mt u w c

T Z Z 


  

  
  

 (13) 

where
0 00 xx yyD D D   and  

0 00  x yu u u
 

Introducing new spatial and temporal 

transformations as follows: 

 
1

Z dZ
mt

 


  and (14) 

 
1

T dT
mt

   

Now transport Eq. (13) becomes  

 
2

0 0 02

l l l
l

c c c
R D u w mt c

T Z Z 


  

  
  

 (15) 

The initial and boundary conditions in 

terms of the above temporally and spatially 

dependent transformation can be written as 

    , ,0 exp  l ic x y c x y

0, 0, 0  x y t  
(16a) 

  00lc ,T c     0 0Z , T  
 

(16b) 

l

Z

c
0

Z


 

 
 

 
     T 0

 (16c) 

Now, we introduce a function  G Z ,T
 as 

   

 
2

0 0
0

0 0

1

2 4

lc Z ,T G Z ,T

u u
exp Z w mt T

D R D

 

 



   
   

   

 (17) 

By using Eq. (17), the advective term is 

reduced in Eq. (15) and with the Laplace 

transforms technique for the assumed 

initial and boundary conditions; we get the 

solution as follows: 

        11 22 33

2

0 0
0

0 0

1

2 4

lc Z ,T G Z ,T G Z ,T G Z ,T

u u
exp Z w T

D R D

   



  

   
   

   

 (18) 

where 

  0
11 1 1 1

0 0

1 1 1 1

2 2

c R
G Z ,T exp T Z erfc Z T

R D D T R
    

       
      

        

 

0
1 1 1

0 0

1 1 1 1

2 2

c R
exp T Z erfc Z T

R D D T R
   

       
      

        

   
(19) 

  20 0
22 2 2 2

0

1

2 2

ic D DR
G Z ,T exp T Z erfc Z T

R D T R
    

    
      

      

 (20) 
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20 0
2 2 2

0

1

2 2

ic D DR
exp T Z erfc Z T

R D T R
   

    
      

      

 

 

 
2

0 0 0
33 0 0

0 02 2
i

u D u
G Z ,T c exp Z T

D R D
  

    
        
       

(21) 

2

0 0
1 0 2 0

0 04 2

u u
w ,

D D
     

 

(22) 

This section described the numerical 

model of two-dimensional transport 

equation for homogeneous media. 

Numerical modeling of contaminant 

transport and groundwater flows was 

explored (Khebchareon, 2012; Chatterjee 

& Singh, 2018). In this work, Crank-

Nicolson scheme is adopted for solving 

solute transport equation numerically and 

the following transformation is used: 

 1Z 1 exp Z    (23) 
Thus, Eq. (15) - (16c) are transformed 

as 

 

 

2
2l l

0 2

1

l
1 1 l

1

C C
R D 1 Z

T Z

C
u 1 Z w C

Z

 
 

 


  


 

(24) 

where, u1= D0 +u0  

Initial and boundary conditions are as 

follows: 

   2

1 0

1

1

1
0

1

0 0

l aC Z , C exp mt log ;
Z

Z , T

 
   

   
   

 

 (25a) 

  10 0 0l bC ,T C ; Z , T  
 (25b) 

1

1

0 1 0lC
; Z , T

Z


  

  (25c) 

Using Crank-Nicolson scheme, Eq. (24) 

is transformed as: 

1 1 1 1 1

1 2 3

1 1

1 4 3

p ,q p,q p ,q

l l l

p ,q p,q p ,q

l l l

C C C

C C C

  

  

    

 

  

    (26) 

where, 

 
   

 
 

 
   

 
 

2 20 01 1
1 1 1 2 12 2

11 1

2 20 01 1
3 1 1 4 12 2

11 1

1 1 1 2 1
2 4 2 2

1 1 1 2 1
2 4 2 2

D Du wT T T
Z Z , Z T

R R Z R RZ Z

D Du wT T T
Z Z , Z T

R R Z R RZ Z

 

 

  
         

  


            
  

 (27) 

and corresponding initial and boundary 

conditions are written as follows:  

 0 2

0

1

1

1

0

p,

l a

p

C C exp mt log ;
Z

p

 
   

        



 (28a) 

0 0,q

l bC C ; q 
 

(28b) 
1 1 0M ,q M ,q

l lC C , q  
 

(28c) 

where, p and q are corresponding to 

convenient distance and time steps, 

respectively. The domain  1Z , T is 

discretize with interval length Z1 and T , 

respectively. 

Case II. For a heterogeneous porous 

formation, the velocities are spatially and 

temporally dependent with designated initial 

seepage velocities (Singh et al., 2018). The 

dispersion coefficients are directly 
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proportional to the square of the seepage 

velocity is used and therefore, we have 

   
0

1 axx xu u mt  and

   
0

1y yu u by mt   
(29) 

where, 
1

a L


 
 

 and 
1

b L


 
 

represents the 

heterogeneity parameters. 

and    
0

2 21 axxx xxD D mt   and

   
0

2 21yy yyD D by mt    
(30) 

Using Eq. (29) and (30), Eq. (3) can be 

written as follows: 

 
   

   

   

   

0

0

0

0

2
2

2

2
2

2

1

2 0

1

1

1

1

l l
xx

l
yy

l
x

l
y l

c cR
D ax mt

mt t x

c
D by mt

y

c
u ax mt

x

c
u by mt c

y








 

 
  

 


 









  


                    

(31) 

where the coefficient of the advection term 

and decay rate are given as 

   0

0

1

2
1

xx

x

aD
mt mt

u
   ,  

   0

0

2

2
1

yy

y

bD
mt mt

u
     

and 
0 0

*

0 0 0x y dau bu k


  


     

With the following spatial transformation 

 
1

log 1X ax
a

  and 

 
1

log 1Y by
b

                      
(32) 

Eq (31) can be rewritten as follows: 

 
 

   

 

0

0 0

0

2

2

2

32

4 0

l l
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l l
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l
y l

c cR
D mt

mt t X

c c
D mt u mt

Y X

c
u mt c

Y




 

 

 
 

 

 
 

 






 

(33) 

where the coefficients of the advection 

terms are 

   0

0

3 1
xx

x

aD
mt mt

u
   and

   0

0

4 1
yy

y

bD
mt mt

u
    

Using the new time variable given in 

Eq. (10), Eq. (33) becomes 

 

   

 

0

0 0

0

2

2

2

32

4 0

l l
xx

l l
yy x

l
y l

c c
R D mt

T X

c c
D mt u mt

Y X

c
u mt c

Y



 

 

 
 

 

 
 

 





 

(34) 

We define a new space variable 

(Carnahan & Remer, 1984; Sanskrityayn & 

Kumar, 2018) 

Z X Y    (35) 
Using Eq. (35), Eq. (34) can be written 

as follows: 

 

 

2

0 2

5 0

l l

l
l

c c
R D mt

T Z

c
mt c

Z







 

 
 

 





 

(36) 

where      
0 05 3 4x ymt u mt u mt     and 

0 00 xx yyD D D   

For convenience, we introduce new 

spatial and temporal variables as 

 

 
5*

0

Z
mt

Z dZ
mt



 




  and

 

 

2

5*

0

T mt
T dT

mt
 




 

(37) 

and transport Eq. (36) can be written as 

follows: 

 

 

2

0 0* * 2 * 2

5

l l l
l

mtc c c
R D c

T Z Z mt

  
  

   





 (38) 

The initial and boundary conditions are 

transformed as 

    
0 0

* *

0 0,0l i x yc Z c exp u aD bD Z    

* *0, 0Z T   
(39a) 



Thakur, C. K., et al. 

728 

  00 *

lc ,T c       
* *0, 0Z T   

(39b) 

*

*
0l

Z

c

Z


 

 
   

     * 0T 
 (39c) 

We considered  

   

 

 

* * * *

2
* *0 0

0 2

0 0 5

, ,

1

2 4

lc Z T G Z T

mtu u
exp Z T

D R D mt

 










   
    

   

 (40) 

In similar manner, we obtained the 

solution as follows: 

        
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* * * * * * * *

1 2 3
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0 0 5
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2 4
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mtu u
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D R D mt
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  

   
    

   

 
(41) 
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(44) 

By using similar procedure, discretized 

equation for heterogeneous medium is 

obtained as follows:  

1 1 1 1 1 1 1

1 2 3 1 4 3

p ,q p,q p ,q p ,q p,q p ,q

l l l l l lC C C C C C                  (45) 
where, 
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 (46) 

and 
 *

2Z 1 exp Z  
 

and initial and boundary conditions are as 

follows:  

 
0 0

0

0 0

2

1

1

0

p,

l a x y

p

C C exp u aD bD log ;
Z

p


   

          
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 (47a) 

0 0,q

l bC C ; q 
 

(47b) 
1 1 0M ,q M ,q

l lC C , q  
 

(47c) 
where, p and q are corresponding to 

distance and time, respectively. The 

domain (Z2, T
*
) are discretized with 

interval length Z2  and T
*
, respectively. 

RESULTS AND DISCUSSION 
Several analytical solutions for the 2-D 

solute transport equation with spatial and 

temporal dependent transport parameters 

have been reported in the literature. This 

section provides verification of the 

proposed analytical solution given by Eq. 

(16) for homogeneous and Eq. (34) for 

heterogeneous porous media in the domain

0 ( ) 1x km  and 0 ( ) 1y km  . We 

computed the concentration distribution 

behaviour for an exponentially increasing 

or decreasing type velocity patterns. In the 

Himalayans basin region, the groundwater 

velocity in both principal directions 

decreases as a function of time after the 

snow melts. A representation that follows 

an exponential decrease reasonably 

characterizes this time dependency, as 

 
0x xu u exp mt  and  

0y yu u exp mt 
 

Solute dispersion is complicated in 

heterogeneous porous media at the 

macroscopic level because dispersion 

coefficient increases with seepage velocity 

of groundwater at different location. 

Symmetry analysis of this complication is 

illustrated in Table 1. Through this table, 

we show that temporal fluctuations in the 

magnitude of the seepage velocity that may 

enhance dispersion in principal direction 

for heterogeneous porous media. 

Table1. Values of seepage velocity and its corresponding dispersion coefficient components with different 

location in the heterogeneous geological structure (Sandstone type aquifer) with dispersion theory 

   2
, ,D x t u x t  along principal directions.  

Case I. Variation of longitudinal seepage velocity and dispersion coefficient components are 

   
0

1x xu u ax mt  and    
0

2 21xx xxD D ax mt   respectively at different locations. 

Parameters x=0 x=0.2 x=0.4 x=0.6 x=0.8 x=1.0 

 ,xu x t  
0

0.20xu   0.24 0.28 0.32 0.37 0.41 

 ,xxD x t  
0

0.02xxD   0.03 0.04 0.05 0.06 0.08 

 ,xxD x t  
0

0.04xxD   0.06 0.08 0.10 0.13 0.16 

Case II. Variation of transverse seepage velocity and dispersion coefficient components are 

   
0

1y yu u by mt  and    
0

2 21yy yyD D by mt   respectively. 

Parameters y=0 y=0.2 y=0.4 y=0.6 y=0.8 y=1.0 

 ,yu y t  
0

0.10yu   0.15 0.21 0.26 0.31 0.37 

 ,yyD y t  
0

0.01yyD   0.02 0.04 0.06 0.10 0.13 

 ,yyD y t  
0

0.005yyD   0.01 0.02 0.03 0.05 0.06 
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Table 2. The Default Parameter values 

Parameters Value 

Solute concentration in inflow reservoir (C0)  1.0mg/km
3 

Input source concentration (Ci) 0.001mg/km
3
 

Initial seepage velocity component in principle direction (
0xu and 

0yu ). 0.2 km/yr and 0.1 km/yr 

Initial dispersion coefficient component in principle direction (
0xxD and 

0yyD ). 0.02 km
2
/yr and 0.01 km

2
/yr 

Resistive coefficient (m). 0.15 /yr
 

First order decay rate for solid phase ( 0 ). 0.2  /yr 

First order decay rate for liquid phase (
*

0 ). 0.6 /yr 

Porosity of sandstone aquifer 0.30 

 

Fig. 2. Schematic diagram of concentration profile in the homogeneous and heterogeneous medium 

(sandstone type aquifer) for different time intervals (1 3t ( yr )  ). 

In hydrological sciences, the various 

geological properties of porous formation 

take part in solute contaminant transport 

through its pores. Figure 2 demonstrates the 

concentration distribution pattern for the 

homogeneous and heterogeneous medium 

for a sandstone ( 0.30 ) aquifer at time 1, 

2 and 3yr, respectively. The same 

concentration values occur at the source 

point of domain in both homogeneous and 

heterogeneous porous medium. The 

concentration increases as a function of time 

and decreases with increasing distance. In 

case of a heterogeneous medium, initially 

the concentration values are smaller than 

that for the homogenous medium for all 

time. For both principal directions of flow, 

the concentration pattern becomes the same 

for both mediums.  

Effect of variation in velocity pattern  
Figure 3(a) illustrates the difference 

between sinusoidal and exponential 

(increasing and decreasing) type velocity 

patterns in a homogeneous aquifer 

(sandstone) for fixed time ( 6t  yr).Intrinsic 

to the initial and boundary conditions, the 

concentration decreases smoothly from the 

maximum value at the origin to smaller 

values at larger distances. The curves for 

increasing and decreasing velocity appear to 

differ little, but show a much farther 

penetration of the concentration front than 

for the sinusoidal velocity. 

The curves presented in Figure 3(b) 

correspond to the pollutant concentration and 

time for different positions with exponential 

velocity patterns (
0 0

,mt mt

x x y yu u e u u e   and
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0 0
,mt mt

x x y yu u e u u e  ). Results are shown for 

two locations ( 0.50, 0.00x y  and 

0.50, 0.50x y  ) for these exponential 

velocity component patterns. It is apparent 

that the initial breakthrough at these points is 

earlier for the case of increasing velocity, and 

that it occurs later for the position with equal 

x- and y- coordinates, as it is farther away 

from the origin than the location on the y- 

axis.  

(a)  

(b)  

Fig. 3. (a) Concentration distribution patterns in the homogeneous medium (Sandstone) with the different 

types of velocity patterns for fixed time (t=6yr). (b) Contaminant concentrations versus time for different 

spatial point with different velocity components patterns (
0 0

,
mt mt

x x y y
u u e u u e

    and

0 0
,

mt mt

x x y y
u u e u u e  ) in the homogeneous porous media (Sandstone). These figures were drawn for 

*
2.49, 0.30, 0.06, 0.02       and m=0.15. 
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Effect of variation with spatial point  
Figure 4(a) plots concentration as a function 

of time for an exponential decreasing source 

with different x- positions (x=0.50, 0.55, 

0.60) and for a fixed y- position (y=0.50). 

The concentration increases faster as a point 

is closer to the origin. At location x= 0.60, 

y= 0.50 have leads to a slower solute 

transport process. The output concentration 

illustrates in Table 4for both the porous 

medium. In Figure 4(b) concentration 

breakthrough at different positions is shown 

for a heterogeneous aquifer subject to 

heterogeneity a=1, b= 2.6. Since 

heterogeneous aquifer are characterized by 

a complex heterogeneous spatial structure 

that strongly affect the dynamics of solute 

transport and fluid flow. For the 

heterogeneous aquifer, it is apparent that the 

concentration initially is larger than for the 

homogeneous one, and that it slowly 

decreases till a time of about 0.7 yr. After 

that, it increases for all shown points, and 

faster as the points are closer to the origin. 

The concentration values are provided in 

Table 4. 

(a)  

(b)  

Fig. 4. (a) Concentration scales for an exponential source input in the homogeneous porous medium with 

different positions. (b) Concentrations distribution in the heterogeneous porous medium (Sandstone 

aquifer with heterogeneity a=1, b= 206) for different positions. The parameters used are 

0 0 0 0
0.20, 0.10, 0.02, 0.01

x y xx yy
u u D D    and m= 0.15. 
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Figure 5 addresses the breakthrough 

curves (BTC) of concentration pattern 

subject to a temporally exponential 

decreasing velocity Eq. (29) for 

heterogeneous geological porous media. 

From this figure, the model results show 

that in aquifer filtration, the contaminant 

migration increase further in the presence 

of the organic matter and many bacterial 

particles. The contaminant zone after t=1yr 

of heterogeneous layer is originated from 

the water flow with a high contaminant 

concentration level. The concentration 

level decreases with the increasing value of 

x- positions (x=0.25, 0.35) in the case of 

constant y- position (y= 0.25). Also, the 

concentration pattern corresponding to the 

location (x= 0.00, y= 0.50) shows much 

more variation with increment in time than 

at the location (x= 0.50, y= 0.00). 

Figure 6(a) and 6(b) illustrate the 2D 

surface plots of the concentration distribution 

for a homogeneous and a heterogeneous 

porous medium, respectively at fixed time 

(t= 4yr) for the sandstone aquifer. 

The concentration values initially 

increase from the source point of the 

domain and beyond this, concentration 

values decrease along principal directions 

of flow observed for color bar in Figure 

6(a). As Figure 6(b) predict, the 

concentration surface in the heterogeneous 

porous medium decrease faster than for 

homogeneous one of Figure 6(a). 

Figure 7 predicted the contour 

representation of relative solute 

concentration distribution in heterogeneous 

medium for sandstone (aquifer) formation. 

The concentration value attains the same 

along with the slope of the concentration and 

the value of concentration increases 

successively from the origin of the domain at 

fixed time (t= 4yr). 

The concentration distribution patterns 

of both the porous structure are explained 

with the help of table and figures. The 

results obtained using analytical methods 

were compared with numerical one for 

both the porous media as shown in Figure 

8 (a) and (b). It is observed that difference 

between the concentration values at 

different locations in homogeneous and 

heterogeneous porous media is almost 

negligible.  

 

 

Fig. 5. Relative solute concentration profile of contaminant in the heterogeneous porous media (Sandstone 

aquifer = 2.49, = 0.30) for the different position. Parameter estimates are c0= 1.0, ci= 0.001, a= 1 and b= 

2.6. 
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(a)  

(b)  

Fig. 6. (a) The predicted concentration distribution surface curve in homogeneous soil columns for 

sandstone type aquifer at fixed time (t= 4yr). (b) The surface curve of solute concentration distribution in 

heterogeneous layer for sandstone type aquifer at fixed time (t= 4yr). 

 

Fig. 7. The predicted concentration contour plot distribution in heterogeneous soil columns at (x= 0.5 km) 

by using best estimated parameters at fixed time (t= 4yr). 
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a)  

(b)  

Fig. 8. (a) Comparison of the proposed analytical solution with the numerical solution at (t= 6yr) for the 

homogenous porous media using the best-estimated parameters. (b) Comparison of concentration 

distribution pattern through the analytical approach with the numerical solution at a fixed time (t= 

6yr) for the heterogeneous porous media. 

The accuracy and efficiency of the 

numerical solution is discussed with root 

mean square error (RMSE) defined as: 

2

1

1 N

i

i

RMSE c
N 

  where, analytical numericalc c c    

and given below in Table5. 

Table 5. RMSE for the homogeneous and heterogeneous mediums at t= 6yr duration.  

Medium 

 

 

Location 

Homogeneous Heterogeneous 

Analytical Values 

(Canalitical) 

Numerical Values 

(Cnumerical) 

Analytical Values 

(Canalitical) 

Numerical Values 

(Cnumerical) 

x=0.1=y
 

0.6812 0.6408 0.5391 0.5692 

x=0.2=y
 

0.4516 0.4031 0.3110 0.3118 

x=0.3=y
 

0.2645 0.2480 0.1814 0.1546 

x=0.4=y
 

0.1156 0.1484 0.1014 0.0553 

x=0.5=y
 

0.0329 0.0857 0.0524 0.0087 

x=0.6=y
 

0.0068 0.0471 0.0249 0.0004 

x=0.7=y
 

0.0025 0.0240 0.0115 0.0002 

x=0.8=y
 

0.0020 0.0108 0.0063 0.0002 

x=0.9=y
 

0.0019 0.0033 0.0055 0.0002 

 RMS Error= 0.0342  RMS Error= 0.0728  
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CONCLUSION 
In this present paper, two-dimensional 

transport of solute is discussed in 

homogeneous and heterogeneous geological 

deposits. Analytical solution is developed by 

using the Laplace transformation technique 

for the case of spatially dependent initial and 

flux boundary conditions. For such 

situations, the concentration decreases 

rapidly in the direction of flow, but builds up 

with increasing time. By varying the initial 

and boundary conditions and velocity field, a 

set of concentration profile can be generated. 

The analytical solutions enable the 

consideration of new benchmark cases for 

assessing the quality of numerical solutions. 

Error analysis is also made for homogenous 

and heterogeneous medium and root mean 

square error (RMSE) is found i.e., 0.0342 

and 0.0728 respectively. 
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