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ABSTRACT: Any proper operation could be translated as a constrained optimization 
problem inside a WWTP, whose nonlinear behavior renders its control problems quite 
attractive for performance of multivariable optimization–based control technique 
algorithms, such as NMPC. The main advantage of this control technique lies in its ability 
to handle model nonlinearity as well as various types of constraints on the actuators and 
state variables. The current study presents the process of BSM1 building, step by step, 
proposing appropriate numerical methods are creating the simulation model in MATLAB 
environment. It also makes a detailed comparison of the proposed NMPC with five recent 
predictive control schemes, namely LMPC, hierarchical MPC+ff, EMPC, and 
MPC+fuzzy, along with the default PI. The performance of predictive control schemes is 
much better than the default PI; however, something of highest importance is the ability 
to use the proposed control scheme in real systems, for a real application faces several 
limitations, especially in terms of the equipment. Finally, in order to compare predictive 
controllers, it is necessary to determine the same conditions so that results from more 
days can be used, and, if needed, more than 28 days have to be simulated. MOI index can 
help determine which of the proposed control scheme is really applicable. 

Keywords: Stable Operation, Predictive Control, BSM1, Wastewater Treatment Plant, 
Unconventional Loading. 

 
 
 
INTRODUCTION


 

A closer look at current operation of 

WWTPs reveals that automation is still 

minimal even in a scientific community. 

The importance of automation and control 

processes, related to various types of 

industries, has now been recognized for 

almost 40 years (Olssen et al., 2005) as it is 

marginal to treatment processes and 

considers WWTPs a non-profit industry. 

Therefore, automation, process control, and 

operating systems have all been labelled 
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costly and out of the process design. In 

general, a control system aims at making 

the process output behave in a desired way 

by manipulating the plant’s inputs. From a 

control engineering point of view, 

controlling WWTPs is a complex topic for 

several reasons. For instance, the response 

to changes in air flow rate is nearly 

instantaneous, while dissolved oxygen 

affects the treatment process in minutes. 

So far various works have dealt with the 

way a linear model can be reduced (e.g., 

Smets et al., 2003; Jeppsson et al., 1993; 
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Julien et al., 1998; Hahn and Edgar, 2002; 

and Lee et al., 2002), showing that balancing 

linear systems is a powerful technique, easy 

to implement. However, especially when 

model-based control methods like nonlinear 

model predictive control are needed, a 

nonlinear model can provide a more accurate 

description of process dynamics. However, 

due to the increased complexity introduced 

by model nonlinearity, nonlinear controllers 

show some drawbacks when compared to 

linear ones. 

The main goal of this project is to 

maintain the quality of the plant effluent in 

given limits in terms of flow rate and 

composition, whatsoever the variations of 

the incoming wastewater. This can be used 

in two approaches: controlling various 

concentrations (nitrate, oxygen, etc.) at 

specific locations within the reactors or in a 

direct scheme, where the set points are the 

effluent quality indicators. The difficulty 

here is that they are given as constraints, 

not as set points (Shen et al., 2008). 

In the literature, one can see works that 

propose various methods to control and 

model WWTPs, even though their 

evaluations and comparisons are difficult 

(Chachuat et al., 2001; Olsson and Newell, 

2002; Mulas, 2005; Weijers, 2000). Most 

papers have used the Benchmark Simulation 

Model No.1 (BSM1) as the working 

scenario, their control objectives usually 

based on improving the effluent quality 

and/or cost indices. There is not a vast 

amount of literature to cover control in 

WWTPs. In some cases a direct control of 

the effluent variables were used to avoid 

violations of the effluent limits. Qin and 

Badgwell (2003) made a good overview of 

both linear and nonlinear commercially-

available MPC technologies, while Francisco 

et al. (2011) and Han et al. (2014) presented 

a procedure for tuning of MPC of WWTPs 

and a nonlinear multi-objective MPC control 

scheme. Shen et al. (2009) implemented 

three different forms of feedback MPC, i.e., 

DMC, QDMC, and a modified version of 

QDMC, incorporating feed forward. In 

addition, direct addressing of effluent quality 

as well as operating costs in a control design 

was expected in some works, e.g., Zeng and 

Liu (2015), to be capable of obtaining 

significantly-improved results, where 

economic MPC was adapted to a WWTPs 

and the performance of the EMPC was 

compared with a PI control scheme. This 

method could have a practical application if 

and only if the process model, occurring in 

the clarifier, is available; otherwise, no 

satisfactory performance can be expected. 

The reason behind using the LMPC is that 

linearized model requires less computational 

effort and time to simulate. This will of 

course have limited applicability.  

Other works have given a trade-off 

between operational costs and effluent 

quality, though not tackling effluent 

violations. They usually propose hierarchical 

control structures. For instance, Santin et al. 

(2015) proposed a control strategy with the 

aim of eliminating violations of effluent 

pollutants by using fuzzy and MPC 

controllers. Another work proposed a two-

level compensated hierarchical control 

strategies (MPC+FF) to control SNO,2 and 

SO,5 in the lower level, with the higher one 

modifying SO,5 set point of lower level, in 

accordance with the working conditions 

(Santin et al., 2015). A more recent work in 

this area can be found in Revollar et al. 

(2017) who compared five different control 

schemes of EMPC in dry weather condition.  

Motivated by the success of different 

schemes of MPC in various applications and 

the fact that more and more severe 

regulations are imposed to WWTPs, 

themselves inherently multi-variable 

processes, the present work takes full 

advantage of NMPC control scheme to 

optimize effluent quality, while minimizing 

the costs, which is at the same time the main 

objective of treatment plants. In this control 

approach the control action, based on the 

prediction of future dynamics of the system, 

allows early control action to be taken in 
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order to accomplish the control performance 

based on the expected future behavior.  

What makes this work significant can be 

listed as below: 

1. Its identification of the nonlinear 

predictive model of the process along 

with simulation and on-line control 

of NMPC controllers is performed 

via MATLAB direct coding instead 

of MPC toolbox. 

2. It determines the initial conditions of 

the reactors as well as the 10
th

 layer 

settler. 

3. It applies more than one numerical 

solution in different steps of simulation, 

thus reducing the amount of additional 

calculation and time significantly 

especially for non-advanced computers .

This becomes very important in 

predictive controlling systems. 

4. It makes a detailed comparison 

among five control techniques 

include for trajectory tracking under 

external disturbances: classical linear 

MPC, hierarchical MPC with feed 

forward action, Economic MPC 

(EMPC), MPC+fuzzy, default PI, 

and a more advanced nonlinear MPC 

(NMPC). The main aim of this 

comparison is to determine both the 

benefits and drawbacks of 

considering the full system dynamics 

in terms of computation effort, 

performance improvement, and 

disturbance rejection. 

5. The method of building the BSM1 

simulation model is presented step by 

step. 

After introducing the steps of building 

BSM1 model, the article compares the 

proposed NMPC in details with five recent 

predictive control schemes as well as the 

default PI controllers of benchmark model. 

MATERIAL AND METHODS 
Benchmark of wastewater treatment plants: 
From a practical point of view, it is not 

possible to assess all control strategies, 

provided in research works, either in real 

life or in a laboratory context, thus making 

any attempt of simulation a cost-effective 

tool for this purpose. However, one should 

consider to compare different operation 

strategies, for which a standard instruction 

has to be followed in order to create the 

system model. The present section gives 

the BSM1 model employed in the 

controllers’ formulation in details. BSM1 

is a simulation environment, defining a 

plant layout, a simulation model, influent 

loads, test procedure, and evaluation 

criteria for both the evaluation and 

comparison of different control strategies. 

Figure1 demonstrates a common and 

relatively-simple plant layout, combining 

nitrification with pre-denitrification. The 

plant is consisted of five bioreactors, 

connected in series, followed by a 10-layer 

secondary settler, the 6
th

 layer of which 

(counting from bottom to top) is the feed 

layer, itself. Also Table 1 offers the main 

characteristics of BSM1 benchmark model. 

The current research used the IWA 

Activated Sludge Model No.1 (ASM1) 

(Henze et al., 2000) to describe and simulate 

eight different biological processes, taking 

place in the reactors. Double-exponential 

settling velocity model (Takacs et al., 1991) 

was also used to simulate vertical transfers 

between the settler layers. Both models are 

internationally accepted. 

The three scenarios used for this study 

entailed typical feed disturbances for three 

influential data (Alex et al., 2008), namely 

dry weather, rainy weather, and stormy 

weather, for 14 days of the influential data 

with sampling intervals of 15 minutes. Such 

a multivariable process should operate under 

those constraints that concern the outputs 

along with the manipulated variables. Table 

2 presents the effluent constraints. In order to 

ensure that the results were obtained under 

very same conditions and could be 

compared, a simulation protocol got 

established. Figure 2 demonstrates the BSM1 

building process step by step. 
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Fig. 1. BSM1 benchmark layout 

Table 1. Characteristics of BSM1 model (Alex et al., 2008) 

Process Parameter Value 

Total volume of bioreactors 5999 m
3
 

Non-aerated compartments volume (reactor 1 &2) 1000 m
3
 

Aerated compartments volume (reactors 3 to 5) 1333 m
3
 

Fixed oxygen transfer coefficient (KLa) 1 h
-1

 

Saturation concentration for oxygen 8 g/m
3
 

Settler volume 6000 m
3
 

Internal recycle flow rate 55338 m
3
/d 

Average influent flow rate 18446 m
3
/d 

Wastage flow rate 385 m
3
/d 

External recycle flow rate 18446 m
3
/d 

 

Table 2. Effluent quality limits (Alex et al., 2008) 

Variable Value 

Ntot <18 g N.m
3
 

CODt <100 g COD.m
3
 

NH <4 g N.m
3
 

TSS <30 g SS.m
3
 

BOD5 <10 g BOD.m
3
 

 

 

Fig. 2. Flowchart of building BSM1 with different controllers 

Step 5. Performing step 4 with NMPC controller. 

Step 1. Predicting the initial values of the steady state for aeration reactors and secondary settler. 

Step 2. Simulating the plant in open loop for 150 days under constant inputs of the 1
st
 column of Table 

3 by using ODE15s solver and comparing the results to appendix 2 of ref ( Alex et al., 2008). 

Step 3. Simulating the plant in closed loop for 150 days first under constant inputs of the 1
st
 column of 

Table 3 by using ODE15s solver, then under dry weather conditions for 14 days via ODE45 as 
suggested in ref ( Alex et al., 2008), and saving the results as the initial values of dynamic simulation. 

Step 4. Simulating the plant under different weather conditions with default PI controllers and the 

results of the last 7 days to be used for evaluation of the performance of the control scheme. 
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Table 3 demonstrates the initial values 

of steady state solution of the equation 

matrix inversion and state variables of raw 

influent wastewater. As shown in Table 4, 

the initial values for use in the numerical 

integration routine can be obtained from 

the steady state solution for each 

completely-mixed reactor. The process of 

treatment can be described by the 

following equations matrix: 

Table 3. Results of performing step 1 of the flowchart. 

State variable 
Input 

(mg/L) 

Initial concentrations of state variables (mg/L) 

Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 

SI 30.00 30.00 30.00 30.00 30.00 30.00 
SS 69.50 2.81 1.46 1.15 1.00 0.89 
XI 51.20 1149.13 1149.13 1149.13 1149.13 1149.13 
XS 202.32 82.13 76.39 64.85 55.70 49.31 

XBH 28.17 2551.80 2553.39 2557.13 2559.18 2559.34 
XBA 0.00 148.39 148.31 148.94 149.53 149.8 
XP 0.00 448.85 449.53 450.52 451.31 452.21 
SO 0.00 0.00 0.00 1.72 2.43 0.49 
SNO 0.00 5.37 3.66 6.54 9.30 10.42 
SNH 31.56 7.92 8.34 5.55 2.97 1.73 
SND 6.95 1.22 0.88 0.83 0.77 0.69 
XND 10.59 5.28 5.03 4.39 3.88 3.53 
SALK 7.00 4.93 5.08 4.67 4.29 4.13 
TSS 211.27 3285.20 3282.55 3277.85 3273.63 3269.84 

Table 4. Steady state solution of mixed aeration reactors equations 

  State variables vector  

  13 12 11 10 9 8 7 6 5 4 3 2 1  
 SALK XND SND SNH SNO KLa XP XBA XBH XS XI SS SI 

Input 

vector 
               

-DhSI,1  0 0 0 0 0 0 0 0 0 0 0 0 -Dh 1 

-DhSs,1           v27K7  v21K1- Dh  2 

-DhXI,1            -Dx   3 

-DhXs,1         v45bA v44bH v47K7-Dx    4 

-DhXBH,1          v54bH-Dx     5 

-DhXBA,1     v63K3    v65bA-Dx      6 

-DhXP,1        -Dx v75bA v74bH     7 

-Dh(So,1-So)     v83K3  O2sat-SO      V81K1  8 

-DhSNO,1     v93K3 -Dh         9 

-DhSNH,1    v106K6 v103K3-Dh        V101K1  10 

-DhSND,1   v118K8 v116-Dh           11 

-DhXND,1   v128K8-Dx      v125bA v124bH     12 

-DhSALK,1  -Dh  v136K6 v133K3        V131K1  13 

  State-state  matrix  
 

For instance the 6
th

 row can be obtained 

as follow: 

v65bA XBA -Dx XBA+ v63K3 SNH= -Dh XBA,1 

The initial values for different layers of 

secondary settler were equal to the 5
th

 

column of the table. For the purpose of 

complementary explanations about the 

processes, occurring in an activated sludge 

reactor, one can refer to Henze et al. 

(2000). The initial conditions, from steps 2 

and 3 of the flowchart, can be found in 

Zeng, J . and Liu, J .(2015).  

Finding a suitable control structure; that 

is to find the actual implementation of the 

optimum policy in the plant, is an important 
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step in controlling of a WWTP. It makes 

definition of the optimal operation for the 

process a critical and important task. 

Model-based predictive control has been 

considered recently due to its capacity to 

deal with multivariable systems and 

constraints. Continuing research activities in 

the field of Nonlinear Model Predictive 

Control has resulted in various 

contemporary developments, with NMPC 

predicting the trajectory of the system on a 

prediction horizon by means of the process' 

model, also computing an optimal control 

sequence on a control horizon (Muller et al., 

2014). It is quite beneficial to use the non-

linear model of the plant as a nonlinear state 

estimator with two PID controllers, instead 

of the default PI controller of BSM1. This is 

pertinent as popular PI controller may be 

hard to tune or becomes ineffective when a 

multivariable system with actuators is to be 

controlled. Two benefits of MPC control 

technique implementation include its 

integration of constraints into the 

optimization of the cost function and 

handling multivariable control problems 

(Rossiter, 2003). A detailed discussion on 

the construction of the estimator can be 

found in Alvares (2000) and Lopez (2000).  

PI/PID Controller or three-term 

controller is a control loop feedback 

mechanism, widely used in industrial 

control systems, whose distinguishing 

feature is its ability to use the three control 

terms of proportional, integral, and 

derivative influence on the controller output 

in order to apply accurate and optimal 

control. The form of the PID controller, 

encountered in industry most often than not, 

can be expressed mathematically as below: 

       

    
0

1

k
tjset set

j k pj j j k j j m
ij m

dj j k j k

T
u t K y y t y y t

T

T y t y t






   



 




 

(1) 

/

1,  2

Ki Kp Ti

Kd Kp Td

j



 

  

where y1
set

 and y2
set

 are the set points of 

SNO,2 and SO,5, respectively. Since set points 

are constant, their derivatives get 

eliminated.  Kp1, Tt1, Ti1, and Td1 are the 

proportional gain, the anti-windup time 

constant, integral time constant, and 

derivative time constant of the controller 

associated with SNO,2, respectively, with 

Kp2, Tt2, Ti2, and Td2 being corresponding 

parameters of the controller, associated with 

SO,5, Ki, and Kd, all being non-negative and 

denoting the coefficients for integral and 

derivative terms, respectively (Astrom and 

Hagglund, 1995). The first control loop 

involves the control of DO,5 via 

manipulating KLa5 to the set point of 2 

mg/L. The second one has to maintain NO,2 

at a set point of 1 mg/L by manipulating Qr. 

Table 5 summarizes the needed parameters 

of PI/PID controllers. By setting the Kd 

coefficient to zero, the default PI controllers 

of BSM1 could be achieved.  

Table 5. Parameters of PI/PID controller 

 SNO,2controller unit SO,5 controller unit 

Sensor class B0 - A0 - 
Measurement range 0-20 gN/m

3 0-10 g(-COD)/m
3
 

Measurement noise 0.5 gN/m
3 0.25 g(-COD)/m

3
 

Kp 10000 m
3
/d/(gN/m

3
) 25 m

3
/d/(gCOD/m

3
) 

Ti 0.025 days 0.002 days 
Tt 0.015 days 0.001 days 
Td 0.015 days 0.001 days 

Set point 1 gN/m
3 2 g(-COD)/m

3
 

MV Qr m
3
/d KLa5 1/h 

MV range
*
 0 to 5 of Q0 m

3
/d 0-10 1/h 

*MV: Manipulating Variable 
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The idea of MPC, whether linear or 

nonlinear, is to utilize a model of the process 

in order to predict and optimize the future 

system behavior. In linear MPC, system 

operation is approximated in the vicinity of 

the working point by a discrete-time state-

space linearized model. Nonlinear MPC fits 

with the nonlinear nature of the system's 

operational problems. The chief argument is 

that it is much more challenging to use 

nonlinear models than linear ones, with most 

natural systems using a nonlinear model to 

express the relations among their parameters. 

Yet, most of the time, a linearized model is 

used to design the process control system. 

Once correct functioning of the control 

system is ensured, the designed controller is 

applied to the real system with a nonlinear 

model. Thus, in practice one will encounter 

some errors. The use of a nonlinear model to 

design the control system is only preferable 

for systems with slow dynamics. Yet, on the 

contrary, using linearized model is the first 

choice in fast dynamics systems. In what 

follows, a continuous nonlinear time MPC 

control method will be explained. 

The highly nonlinear nature of the 

treatment process' operational problems is 

the major reason why Nonlinear Model 

Predictive Control (henceforth abbreviated as 

NMPC) is worth substantial investigation. 

An optimization-based method to control 

nonlinear systems, NMPC is primarily 

applied for stabilization and tracking 

problems, being widely used in process 

industry, in particular, thanks to its 

applicability on large scale processes along 

with capability to handle the constraints 

(Shen et al., 2008). The idea for an MPC, 

whether linear or nonlinear, is to utilize a 

model of the process in order to predict and 

optimize the future system behavior. The 

additional term nonlinear indicates that 

model (2) needs not to be a linear map. 

Model, constraints, and performance index 

are three main components of an MPC 

scheme and a nonlinear model in form of (2) 

is the first important element: 

ẋ=f(x(t),u(t)), x(0)=x0 (2) 

In generic notation, the NMPC problem 

can be expressed as quadratic function, 

often the first choice for the cost function. 

The NMPC algorithm relies on calculating 

optimal control actions over a control 

horizon (hc), which minimizes the impact 

of system input on the cost function (J) of 

the system over a prediction horizon (hp) 

and satisfying constraints. Variables are 

predicted with regard to the system model, 

defining their relations to the system. 

Although a vector on hp optimal control 

actions is calculated at every sampling 

time, only the first element of the vector is 

implemented to the real system, upon 

which the system status is updated to form 

an updated cost function in order to be 

optimized and able to find the optimal 

controlling parameters vector for the next 

step and so on. The NMPC scheme shown 

in Figure 3, repeatedly solves the following 

Optimal Control Problem (OCP): At each 

sampling step n, the predicted future 

behavior of the system over a finite time 

horizon k=0,…,N-1 of length N≥2 is 

optimized and only the first element of the 

resulting optimal control sequence is used 

as a feedback control value for the next 

sampling interval. Now the optimal control 

problem (OCP) can be defined as follows: 

     

     

2

,

0

2 2

, ,

(
,

)  

x

u

T

ref k Q

t

ref k ref kR P

min
x t x t u t

U X

u t dt x T x T



  

 



 

(3) 

Subjected to  ̇   (   ); 
u(t) ϵ U &   x(0)=x(t0). 

where Qx≥0, Ru>0 and P≥0 are the penalty 

on the state error, the penalty on control input 

error, and the terminal state error penalty, 

respectively, while xref,k and uref,k are the 

target state vector and target control input at 

time k (Grune and Pannek, 2010). U indicates 

the control input constraint and finally f 

stands for the state equations of the process, 

demonstrated in Table 4, related to BSM1.  
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Fig. 3. Flowchart of NMPC algorithm 

Due to slow dynamics of the process, 

there is more time to compute control 

commands. Therefore, the performance 

criterion is considered the least control 

effort. According to Equation (3), sum of 

the three positive terms is the smallest 

value, each inclined towards zero and one 

should keep both x and u variations around 

this value, meaning that the system state is 

near the equilibrium point and the actuators 

are used as little as possible to consume 

less energy. Therefore, the system cost 

function is composed of two parts, one 

trying to maintain the state of the system 

around the balance point which preserves it 

with the least control effort, while the 

other's concept in Equation (3) is a way of 

energy optimization. The aforementioned 

OCP needs to be solved repeatedly by 

means of implicit approaches. Direct 

methods techniques such as Runge-Kutta 

or Euler have attracted particular attention 

to address OCPs. Hybrid implicit Runge-

Kutta order 4 and Euler are employed to 

forward simulation of the system dynamics 

along the interval. In this way, the 

computation time can be improved 

(Hasanlou et al., 2018). Furthermore, 

Genetic Algorithm (GA) method is used to 

solve the optimization process. 

RESULTS AND DISCUSSION  
This section compares the implemented 

control configurations, proposed in the 

previous section, with the results from other 

related works. Here, the results were 

obtained, through MATLAB 

implementation, described in Alex et al. 

(2008) and the NMPC controllers got 

identified, using direct coding in this 

software. Such controllers consider more 

general optimal control problems (OCPs) 

than the ones, penalizing the distance to a 

desired reference solution (Grune and 

Determination of initial Manipulating values, 

boundary conditions & constraints 

Specifying the limits of the controller 

Selecting the prediction and control horizons 

Optimal MV over hp 

Cost function J 

Select the first optimal 

move of the MV 

BSM1 model 

NMPC-feedback control value 

Optimization of J 

Set point 

ek+1 
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start point 

for next 

optimization 
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Pannek, 2010). The WWTP, illustrated in 

Figure 1, was represented by a nonlinear 

model in the state-space form with 145 state 

variables. The same sensors and actuators, 

defined within the BSM1, were also applied, 

though it was assumed that the dissolved 

oxygen sensors were ideal with no delay and 

noise. Prediction horizon (hp) and control 

horizon (hc) proved to be the significant 

factors, affecting NMPC performance, with 

the selected values for tuning the controllers 

being hp = 7 and hc = 3. It should be noted 

that only a slight change might be noted in 

the results with different values of hp and hc, 

since these values were not critical and could 

be slightly changed with similar results. The 

assessment took place in two levels. The first 

one concerned the control performance, 

serving as evidence for proper application of 

the proposed control strategy, assessed by the 

Integral of the Square Error (ISE) criterion. 

The second one, however, provided the 

measures for the impact of the control 

strategy on plant performance, and included 

the Effluent Quality Index (EQI) and Overall 

Cost Index (OCI). Table 6 gives the 

performance assessment criteria definition 

with the used indices being as follows:

 

(4) OCI AE PE 5.SP 3.EC ME     
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Table 6. Criteria definitions, used in the performance assessment formula and Bi values 

Formula Definition 
0.75(XSe+XBH,e+XBA,e+XP,e+XI,e) Total effluent suspended solids (TSSe) 

SS,e+SI,e+XS,e+XI,e+XBH,e+XBA,e+XP,e Required effluent  Chemical oxygen demand (CODe) 

0.25(SS,e+ XS,e+(1-fP).( XBH,e+XBA,e)) Required effluent Biochemical  oxygen demand (BOD5) 

SNH,e+SND,e+XND,e+iXB(XBH,e+XBA,e)+iXP(XP,e+XI,e) Total kjeldahl  nitrogen content (TKNe) 

SNO,e Effluent nitrate nitrogen (NOe) 

TKNe+SNO,e Total effluent nitrogen (Ntot,e) 

TSSa+TSSs Total sum of suspended solids of reactors and settler 

2 Weighting factor of BSS 
1 Weighting factor of BCOD 
2 Weighting factor ofBBOD5 
30 Weighting factor ofBTKN 
10 Weighting factor ofBNO 
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Most environmental issues, caused by 

wastewater, are related to its nitrogen and 

phosphorus contents. BSM1 suffers from an 

anaerobic reactor; therefore, the effect of one 

of the most important parameters of 

wastewater, phosphorus, was not studied at 

all. Consequently, the control system focused 

on nitrogen-containing parameters. Taking 

full advantage of the process model in the 

structure of the control system played a 

significant role in maintaining the standard 

of discharge to receptive bodies. The more 

accurate the model, the better the results.  

To compare the trajectory tracking of 

each controller, Figure 4 shows the 

performance of the two control schemes 

under three external disturbances. As it can 

be seen, there was no significant difference 

between PI controllers’ performance in the 

three weather conditions and the NMPC 

outperformed the default PI. Clearly, the 

set point tracking, implemented in the 

NMPC or other predictive controllers, 

greatly improved the performance of the 

proposed control strategies. 

 

 

 

Fig. 4. Performance of NMPC (solid black line) and default PI (blue dashed line) controllers in different 

weather conditions for SO, 5 and SNO,2 control; the red line is the set point. 
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Fig. 5. Manipulated inputs in different weather conditions 

What is quite noticeable from Figure 5-

a, is the wide range of changes in the 

internal recycle flow rate values at the 

presence of system disturbances. The 

maximum flow rate under normal 

operating conditions was about 45000 

(m
3
/d), while in rainy weather conditions 

this amount was approximately twice the 

normal rate. Although a large range of 

variation was considered for this variable, 

the saturation limit was reached more often 

than not. From a practical point of view, 

the capacity of the sludge transmission line 

and pumping system was somewhat clear; 

to overcome this problem a backup 

transmission line can be considered in 

parallel with the main line. The more 

frequently is the equipment turned on and 

off, the longer they work efficiently. In 

spite of the wide range of changes in this 

control parameter, this large domain got 

significantly reduced and confined. 
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Fig. 6. Instantaneous EQ, given by NMPC (solid line) and PI (dashed line) in three weather conditions 
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Fig. 7. Effluent parameters concentration in different weather disturbances for NMPC (solid line) and PI 

(dashed line) 

By means of the proposed NMPC 
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never reached during the same period 

(Figure 5-b). As a result, aeration 

equipment were not in any serious trouble. 

The Effluent Quality (kg pollution 

unit/d) is defined as the daily average of 

weighted summation of compounds that 

have a major influence on the quality of the 

receiving water (Copp et al., 2002). This 

index is typically considered as an 

important indicator of the performance of 

control systems. Figure 6 compares 

trajectories of the instantaneous EQ given 

by the NMPC and the PI control under 

different weather conditions. From this 

figure, it can be seen that the NMPC gives 

better EQ under external disturbances but 

changing the type of the controller will not 

change this index much. 

According to figure 7, the concentrations 

of total nitrogen and ammonia nitrogen have 

oscillating state. This is due to changes in the 

characteristics of the input sewage during 

over a week or even in a day. Three 

parameters including: COD, BOD5 and TSS 

meet the related standard limits by default PI 

controllers (Hasanlou et al., 2018). In 

addition to reducing the concentration of 

parameters at the courier points, the number 

of violations of the standard limits is also 

reduced. This trend is visible in all three 

weather disturbances. As expected, the exact 

tracking of the set points has put its impact on 

the process outputs. The comparison aims to 

highlight the benefits of full system dynamics 

consideration and its effect on the WWTP 

performances. The detailed results of 

controller performance assessment 

comparison and total WWTP performance 

assessment are shown in Table 7 and Table 8.  

  

Table 7. Results of different control schemes for three weather conditions. 
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Dry weather   

AE (kWh/d) 3698.34 3691.04 3692.93 - 3690.73 
- 

PE (kWh/d) 241.03 289.15 243.83 - 307.01 - 

SP  for disposal (kg/d) 2440.61 2439.75 2439.97 - 2441.37 - 

EQI (kg pollutants/d) 6123.02 5938.29 6022.64 6048.25 5671.86 5910.83 

OCI 16382.40 16418.94 16376.59 16382.97 16493.88 16242.97 

Storm weather   

AE (kWh/d) 3720.92 3709.81 3715.15 - 3791.25 - 

PE (kWh/d) 265.20 317.36 271.07 - 322.33 - 

SP for disposal (kg/d) 2605.49 2606.51 2606.49 - 2609.14 - 

EQI (kg pollutants/d) 7220.72 6904.59 7173.62 7132.60 6819.67 7022.25 

OCI 17253.57 17299.72 17258.66 17261.39 17438.11 17243.73 

Rain weather   

AE (kWh/d) 3671.35 3708.12 3667.87 - 3808.71 3044.92 

PE (kWh/d) 285.26 303.53 291.39 - 333.17 298.34 

SP for disposal (kg/d) 2357.59 2358.01 2357.03 - 2359.1 2439.26 

EQI (kg pollutants/d) 8184.73 7978.45 8233.04 8090.29 7895.52 8072.5 

OCI 15984.55 16041.7 15984.41 15990.85 16212.37 15780.83 
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Table 8. Performance comparison of SO,5 and SNO,2 control indifferent control schemes for three weather 

conditions. 

 

SO,5 control SNO,2 control 
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/l)
2*

d
) 

IA
E

 
(m

g
 N

/l)*
d

) 

m
ea

n
(|e|) 

(m
g

 N
/l) 

Dry Weather       

NMPC 0.0033 0.1192 0.0177 0.0152 0.2536 0.0377 

PI  
(Henze et al. 2008) 

0.083975 0.58831 0.084044 0.56897 1.4348 0.20497 

Hierarchical 

MPC+ff
*
  

(Santin et al. 2015) 
0.00067 0.047 0.0068 0.0013 0.067 0.0096 

EMPC  
(Muller et al. 2014) - 7.72791 - - 8.07046 - 

MPC 
(Muller et al. 2014) 

- 0.01314 - - 0.02758 - 

MPC+fuzzy 
(Santin et al. 2015) 

- - - - - - 

Storm weather       

NMPC 0.0033 0.1222 0.0182 0.0347 0.3995 0.0594 

PI  
(Henze et al. 2008) 

0.0789 0.5660 0.0809 0.7880 1.6785 0.2398 

Hierarchical 

MPC+ff
*
  

(Santin et al. 2015) 
- - - - - - 

EMPC  
(Muller et al. 2014) - - - - - - 

MPC 
(Muller et al. 2014) 

- - - - - - 

MPC+fuzzy 
(Santin et al. 2015) 

- - - - - - 

Rain weather       

NMPC 0.0041 0.1369 0.0203 0.0208 0.2976 0.0442 

PI  
(Henze et al. 2008) 

0.0747 0.5567 0.0795 0.7944 1.7349 0.2478 

Hierarchical 

MPC+ff
*
  

(Santin et al. 2015) 
- - - - - - 

EMPC  
(Muller et al. 2014) - - - - - - 

MPC 
(Muller et al. 2014) 

- - - - - - 

MPC+fuzzy 
(Santin et al. 2015) 

- - - - - - 

* The units of the criteria are not mentioned in the article.  

As it is clear in Table 7, the five MPC 

schemes have remarkable improvement 

and very comparable in the results in 

comparison with the default PI.  It should 

be noted that the results of all predictive 

control schemes are close to each other and 

there is no significant difference between 

them. This item is visible in all three 

disturbances results and no control scheme 

has absolute superiority. 

For a more comprehensive comparison, 

some related referenced papers have been 

compared with the proposed NMPC control 

scheme for different weather disturbances in 
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Table 8. Three statistical criteria have been 

considered in addition to allow the 

comparison with more papers that use the 

original version of BSM1. Integral of Square 

Error (ISE), Integral of absolute error (IAE) 

and average of the absolute error (mean (|e|)) 

(Alex et al., 2008). The performance of 

NMPC in all weather conditions is better 

than the default PI. Unfortunately, these 

three criteria have not been calculated in 

related works and only the results of the dry 

weather disturbance are available. An 

important issue to be considered is some 

control schemes are justified only 

theoretically, although they have good 

results. As long as the range of mechanical 

equipment performance is limited, they will 

have a longer lifespan, less depreciation and 

operation and maintenance and operation 

costs will be lower. Also, the frequency of 

switching on and off the mechanical 

equipment has a significant effect on the 

energy consumption and lifetime of the 

devices. For instance pumps, which are one 

of the most important mechanical devices in 

a treatment plants, have limited range of 

performance. This issue can be solved by 

defining an Index which includes factors 

such as: hours of operation, range of 

performance, life span and depreciation in 

calculation of OCI. 

CONCLUSION 
Finding the optimal operation conditions 

for the activated sludge process is the main 

goal of controlling urban wastewater 

treatment plants. Taking full advantage of 

process model plays a significant role to 

achieve this goal. In this study, the steps of 

building BSM1 were presented clearly and 

two of the most important ambiguities of 

the model, initial values inside the reactors 

and the clarifier layers for starting the static 

simulation and appropriate solvers for 

numerical methods in different simulation 

steps were answered. Applying more than 

one numerical solution to solving the 

simulation model reduces the amount of 

additional calculus and time significantly 

which is very important in predictive 

controlling systems. 

Due to slow dynamics of the treatment 

process, model based predictive control 

systems are an appropriate option for 

applying process control strategies. So the 

NMPC control procedure was defined and 

compared with four recent predictive 

control schemes and the default PI 

controllers of BSM1. Exploiting of full 

dynamic of the process helps to more 

precisely examine the process control 

behavior. Moreover, the damper property 

of predictive control schemes against 

external disturbances plays an effective 

role in meeting the standard wastewater 

discharge. The results of the simulations 

indicate that the proposed control strategies 

do not necessary have a positive effect on 

all effluent process parameters and in some 

cases they also have reverse effects. It’s 

almost impossible to control all process 

parameters simultaneously.  

In spite of the mentioned theoretical 

developments and real applications of 

predictive control systems in various 

processes; no successful practical application 

of this kind of controllers have been reported 

in urban treatment plants. So, one cannot 

definitely comment on the superiority of the 

particular type of them. To evaluate the 

effectiveness of the proposed control scheme 

in real application, it is suggested that an 

index be defined as Maintenance & 

Operation Index (MOI) including factors 

such as: hours of operation, range of 

performance, life span and depreciation be 

considered in the OCI calculation. 

The performances of all predictive 

control schemes are much better than the 

default PI but, what is more important than 

anything else is the ability to use the 

proposed control scheme in real systems. 

Due to the fact that there are several 

limitations in real application especially the 

constraints associated with the equipment. 

Finally, it should be noted that in default PI 
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controllers, from 28 days of simulation, we 

only have access to the results of the last 

seven days, from the 21
st
 to 28

th
 day. 

Consequently, in order to compare 

predictive controllers, it’s necessary to 

determine the same conditions so that the 

results of more days can be used and if it is 

needed to simulate more than 28 days, can 

be acted as specified instruction.  
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