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ABSTRACT: Mathematical models for pollutant transport in semi-infinite aquifers are 
based on the advection-dispersion equation (ADE) and its variants. This study employs 
the ADE incorporating time-dependent dispersion and velocity and space-time dependent 
source and sink, expressed by one function. The dispersion theory allows mechanical 
dispersion to be directly proportional to seepage velocity. Initially the aquifer is assumed 
contaminant free and an additional source term is considered at the inlet boundary. A flux 
type boundary condition is considered in the semi-infinite part of the domain. Laplace 
transform technique (LTT) is then applied to obtain a closed form analytical solution. The 
effect of source/sink term as a function in the one-dimensional advection-dispersion 
equation is explained through the graphical representation for the set of input data based 
on similar data available in hydrological literature. Matlab software is used to obtain the 
graphical representation of the obtained solution. The obtained analytical solution of the 
proposed model may be helpful in the groundwater hydrology areas. 
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INTRODUCTION


 

Groundwater is a vital source of drinking 

water and agricultural irrigation in rural 

India. Unfortunately, groundwater has 

become highly polluted by municipal, 

commercial, residential, industrial, and 

agricultural activities. Examples include 

chemical fertilization, industrial waste 

storage or spills, hospital wastes, leakage 

from petrol pumps, septic systems, and 

wells. The literature on point and non-point 

source pollutant transport groundwater is 
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rich. The analytical solution was obtained for 

ADE with zero-order production, 

simultaneous adsorption, and first-order 

decay for chemical transport using LTT (Van 

Genuchten, 1981). Two Dirichlet problems 

were discussed for 2-D flow patterns in the 

groundwater system with first order decay or 

linear adsorption: i) flow parallel to the 

boundary of a domain and ii) arbitrary flow 

towards a well in an aquifer (van Kooten, 

1994). The transport model was used to 

present a computational study for pollution 

of underground water due to waterproofing 
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damage of the system in a waste material 

depository or sewage sludge (Balla et al., 

2002). Also, the periodic type boundary 

conditions were employed in a semi-infinite 

domain to obtain the solutions for ADE 

(Logan & Zlotnik, 1995). However, a 

solution of the ADE was developed to 

describe chemical transport with sorption 

and decay in a finite domain (Golz & 

Dorroh, 2001). An analytical solution was 

also presented for solute transport in rivers 

considering transient storage with 

instantaneous injection (Smedt et al., 2005). 

For a finite spatial domain, the 1-D ADE 

with an arbitrary time-dependent inlet 

boundary condition was solved analytically 

using LTT and Generalize Integral 

Transform Technique (GITT) (Chen & Liu, 

2011). Also, Green’s function method was 

adopted to develop the analytical solution of 

ADE for steady 1 or 2-D flow in 

homogeneous porous media (Leij et al., 

2000). Two different types of boundary 

conditions (Dirichlet and Cauchy) were used 

to obtain a general solution for a 1-D reactive 

transport model (Srinivasan & Clement, 

2008). In the groundwater system, the 

interpolation polynomial method was 

employed to derive the higher order schemes 

of advection–diffusion (Tkalich, 2006). 

Considering the dispersion coefficient as a 

time-dependent function in 2-D ADE, the 

analytical solutions were developed for two-

point sources i) instantaneous and ii) 

continuous in an infinite aquifer (Aral & 

Liao, 1996). Using LTT, an analytical 

solution was obtained for the ADE with the 

help of longitudinal dispersion along 

unsteady groundwater flow in the finite part 

of aquifer and an explicit finite difference 

scheme was used to obtain numerical 

solution (Singh et al., 2015). After that, the 

depth dependent variable source was 

considered at the inlet location of the model 

domain to solve the 2-D ADE by finite 

element method (Chatterjee & Singh, 2018). 

Two problems were discussed in the semi-

infinite aquifer with exponentially spatially 

dependent initial condition under the specific 

assumptions i) temporal dependent velocity 

in the part of homogeneous medium and ii) 

spatially and temporal dependent velocity in 

the part of heterogeneous medium (Thakur et 

al., 2019). A numerical model was presented 

for the multispecies contaminant transport 

problem in the porous medium (Natarajan & 

Kumar, 2017). With constant concentration 

source and flux type boundary source in the 

horizontal and vertical medium, the solution 

was obtained analytically using LTT for 

transient water and contaminant transport 

(Sander & Braddock, 2005).  

Two solutions were presented for a solute 

transport modelling under the specific 

assumption i) distance-dependence 

dispersion and ii) time-dependence source of 

contaminant in the finite column (You & 

Zhan, 2013). For a saturated semi-infinite 

porous media, a general analytical solution 

was obtained for an instantaneous 

contaminant point source by using the 

method of source function (Bai et al., 2015).  

A boundary layer theory was used on 

convection–dispersion equation, to obtain the 

general polynomial solution (Wang et al., 

2017). Moreover, two models of 1-D ADE 

were developed, where in the first model the 

diffusion coefficient was assumed as 

constant and flow velocity was variable and 

in the other model both were variables. 

Semi-analytical solutions were developed 

using the Laplace transformation and also 

using a special approximation scheme to the 

variable flow velocity and diffusion 

coefficient (Jia et al., 2013). Most of these 

studies were employed 1-D with time and 

space dependent velocity and dispersion 

coefficient. But our main concern in this 

study is to incorporate the source/sink term 

with the ADE. There have limited studies in 

this context, and some of them are pointed 

out below.  

Using the coupled complex Ginzburg–

Landau (CGL) equations, sources and sinks 

were most important to categorize most of 

the properties of wave systems (Van Hecke 
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et al., 1999).  Also, the density profile was 

calculated for vertical source/sink of 

ammonia within-canopy by using the inverse 

Lagrangian technique (Nemitz et al., 2000). 

Furthermore, the analytical solutions were 

developed for steady-state and transient, 

consisting of parallel discrete fractures and 

evenly spaced in a porous medium. The 

solutions, obtained by using Laplace and 

Fourier transforms, contained longitudinal 

and transverse dispersion; a strip source of 

finite width, aqueous and source decay (West 

et al., 2004). However, the arsenic in 

groundwater due to high carbonates wetland 

soils was observed (Bauer et al., 2008). The 

constructed wetland facilities discussed using 

simulation of flow and nitrogen 

transformation through the ADE with linear 

sink-source terms in horizontal subsurface 

flow (HSF) (Moutsopoulos et al., 2011). But 

on the regional scale for substance flows the 

sinks were assessed (Kral et al., 2014). The 

nonlinear wind input term was used to 

discuss the wind wave interaction and white 

capping dissipation depending on the growth 

of airflow separation, wave steepness and 

negative growth rate under adverse winds 

(Zieger et al., 2015). The hydrodynamic 

dispersion coefficients were used to 

characterize in a gravel layer for the 

prediction of nonpoint source pollutant 

migration in alpine watersheds by using an 

electrolyte tracer method (Shi et al., 2016). 

Using an eco-hydrological watershed model, 

an improve water quality for an efficient 

watershed management plan was developed 

(Amin et al., 2017). An integrated approach 

was presented to predict the current and 

future climatic changes for flow and salt 

concentration in the system of groundwater 

which is linked by the soil and water 

application tool (SWAT), MODFLOW, and 

3-D groundwater variable-density flow that 

were coupled with the multi-species solute 

and heat transport models (Akbarpour & 

Niksokhan, 2018). 

The main focus of the present study 

therefore is to derive a closed form solution 

of 1-D ADE with source and sink term 

incorporated for solute transport in an 

aquifer of semi-infinite. This study also 

included the space and time dependent 

source term expressed in a functional form 

that influences pollution concentration, as 

well as a sink term as a remedial measure 

using the same function after a certain 

distance. This type of work has not been 

reported yet. In all previous studies the 

source/sink terms were presented as a 

function of time or space, but in this study 

we considered source or sink term as a 

function of space and time dependence in 

the form, ( , ) ( ) ( )g x t h t x , where the time 

dependent part is measured in general form.  

MATHEMATICAL FORMULATION   
The groundwater pollutant concentration is 

investigated with the effect of source/sink 

term, and represented by some space and 

time dependent functions. Because 

source/sink term represents pollutant added 

to or removed from the medium (i.e., 

positive for source and negative for sink). 

Solute movement in the flow region occurs 

due to advection and dispersion. A point-

source pollutant significantly reflects the 

higher concentration in the groundwater 

system and the pollutant spreads in the flow 

direction of groundwater in the aquifer. In 

this study, the aquifer domain is assumed to 

be homogeneous and the one-dimensional 

solute movement is investigated analytically 

by using ADE with time-dependent 

dispersion and velocity and space-time 

dependent source and sink term, 

mathematically expressed by single function 

in the form, ( , ) ( ) ( )g x t h t x . 

The 1-D ADE with source and sink in a 

semi-infinite aquifer can be written as: 

2
1

02
( , )

C C C
u D c g x t

t x x

  
  

  
 (1) 

where, C  denotes the pollutant 

concentration, D and u  are the time- 

dependent dispersion coefficient and seepage 

velocity, respectively, ( , )g x t is a source-
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sink term as a function of space x  and time t
, i.e. ( , ) ( ) ( )g x t h t x .The time-dependent 

Dirichlet type source of contaminant is 

considered at the upper end of the aquifer, 

i.e. 0x  and the concentration gradient at 

the downstream end of the aquifer (at infinite 

distance) is assumed to be zero. Initially the 

aquifer is considered to be pollutant free. 

Thus, the initial and boundary conditions can 

be written as: 

( , ) 0, 0C x t t   (2) 

0( , ) ( ), 0C x t c f t x 

 
(3) 

0
C

x
x


 

  
(4) 

We consider that ( )f t is an exponentially 

decreasing function of time t , i.e., 

2( ) exp( )f t k t  , where 2k  is a constant. The 

dispersion is considered to be directly 

proportional to seepage velocity (Freeze & 

Cherry, 1979). Hence, the dispersion and 

seepage velocity were expressed as follows:  

0 ( )u u h t        and       
0 ( )D D h t  (5) 

where 0D  and 0u  are the initial dispersion 

and seepage velocity coefficient, 

respectively; and
 

( )h t  is considered as a 

exponentially decreasing function of time 
t  i.e., 1( ) exp( )h t k t  .  

Now we use the following 

transformation: 

* *

0

( )

t

T h t dt   (6) 

and express Eq. (1) as 

2
1

0 0 02
( )

C C C
u D c x

T x x


  
  

  
 (7) 

where, 
0

( )
( )

s x
x

s
   is the non-dimensional 

function and the space dependent function 

is ( )

0( ) x as x b e   and 0s  is the function value 

at x=0. 

To remove the advection term from the 

Eq. (7) by using the following 

transformation 

2

0 0

0 0

( , ) ( , )exp
2 4

u x u T
C x T K x T

D D

 
  

 
 (8) 

Substitution of Eq. (8) in Eq. (7), we 

obtain   

22
1 0 0

0 02

0 0

exp ( )
4 2

u T u xK K
D c x

T x D D


  
   

   

 (9) 

Now the initial condition becomes 

( , ) 0 0K x T T   (10) 

and the boundary conditions become 

0( , ) ( ) 0K x T c T x   (11) 

0

0

0
2

uK
K x

x D


  

  (12) 

DERIVATION OF ANALYTICAL 
SOLUTION 
Taking the Laplace transform of Eq. (9), 

we obtain 

12

0 0 2
0 2

0 1

exp( ( ))

( )

c b A x aK
D p K

x s p B


  

  
 

 (13) 

where, 0
2

0

1
2

u
A

D
   and 

2

0
1

04

u
B

D


 

Also, taking the Laplace transform of 

Eq. (11) and Eq. (12), we get 

0

2

( , ) 0
( )

c
K x p x

p B



 


 (14) 

0

0

0
2

uK
K x

x D




  
  

(15) 

where, 
2 1 2B B k  . 

With the use of the boundary conditions 

given by Eqs. (14)-(15), the solution of Eq. 

(13) in terms of ( , )K x p


 becomes 
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1

0 0 0

2

2 0 0 1 2 0 0

1

0 0 2

2

0 1 2 0

exp( )
( , ) exp exp

( ) ( )( )

exp( ( ))

( )( )

c c b ap p
K x p x x

p B D s p B p A D D

c b A x a

s p B p A D

    
              

 


 

 (16) 

Taking inverse Laplace transform of Eq. (16), we obtain the solution is as follows:  

1 1

0 0 0 0 2
0 1 2 3 42 2

0 1 2 0 0 1 2 0

exp( ) exp( ( ))
( , ) ( )

( ) ( )

c b a c b A x a
K x T c I I I I

s B A D s B A D

 
   

 
 (17) 

where,  

   2 2

1 1 1 1 1 1 1

1
exp exp

2 2 2

X X
I a T a X erfc a T a T a X erfc a T

T T

    
         

    
 

   2 2

21 2 2 2 2 2 2

1
exp exp

2 2 2

X X
I a T a X erfc a T a T a X erfc a T

T T

    
         

    
 

   2 2

22 3 3 3 3 3 3

1
exp exp

2 2 2

X X
I a T a X erfc a T a T a X erfc a T

T T

    
         

    
 

 2 21 22I I I  , 

0

x
X

D
 ,  2

3 2expI a T ,  2

4 3expI a T
1 2a B , 

2 1a B  and 
3 2 0a A D .                                                                                         

Substituting the value of ( , )K x T  in the 

Eq. (8), we get the solution of the 

considered model as: 

1 1 2

0 0 0 0 2 0 0
0 1 2 3 42 2

0 1 2 0 0 1 2 0 0 0

exp( ) exp( ( ))
( , ) ( ) exp

( ) ( ) 2 4

c b a c b A x a u x u T
C x T c I I I I

s B A D s B A D D D

    
       

    
 (18) 

In the special case, the analytical 

solution is obtained in the absence of 
source/sink function i.e., 0g   in Eq. (1) 

is as follows: 

 

 

2

1 1 1 2

0 0 0

0 02

1 1 1

exp
2

( , ) exp
2 2 4

exp
2

X
a T a X erfc a T

Tc u x u T
C x T

D DX
a T a X erfc a T

T

  
   

         
    

  

 (19) 

RESULT AND DISCUSSIONS 
For the computation we considered 

1

0 1.0 / ( * )c mg l year
, 0 1.0 /c mg l , 1 0.1/k year

, 

2 0.01/k year
, 

2

0 0.05 /D km year , 0 0.2 /u km year , 

0 0 0.5a b km   in the reasonable range from 

the existing literature (Singh & Kumari, 

2014). It was assumed that the source of 

contamination originated below the water 

table which may occur in many situations, 

such as materials stored or disposed by 

deep well injection, agricultural drainage 

wells, and industrial disposal sites, to name 

but a few. 

Fig. 1 plots the curves showing 

concentration in the aquifer at t = 3, 3.5 

and 4 years. The contaminant 

concentration was approximated as 1 mg/l 

at the first end of the aquifer i.e., x = 0 and 

concentration increased with one additional 

source function ( , ) ( ) ( )g x t h t x  in the 
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aquifer. The peak pollutant concentration 

moved from the additional source function; 

after x= 0.5 km the contaminant 

concentration decreased with distance and 

asymptotically approached zero. We 

observed form the Fig.1, the contaminant 

concentration increased sharply for all 

three different times at the inlet location of 

the modal domain. The concentration 

values is lower at each of the position in 

the aquifer as well as intermediate position 

for the time period t = 3 year as compare to 

the long time period i.e., t = 3.5 and 4 years 

as shown in the Fig.1. Overall, we 

observed that the rate of increase of the 

pollutant concentration is slower for the 

small time period and the rate of decrease 

of the pollutant concentration is faster for 

the small time period along the flow 

direction as shown in the Fig.1 and towards 

the exit boundary. 

 

Fig. 1. The pollutant concentration profile depicted for the solution of Eq. (18) with fixed dispersion and 

velocity at three different times. 

 

Fig. 2. The pollutant concentration profile depicted for the solution of Eq. (18) at three different fixed 

location of the model domain. 
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Fig. 3. The pollutant concentration profile depicted for the solution of Eq. (18) at three different velocities 

profiles with fixed dispersion and particular time. 

 

Fig. 4. The pollutant concentration profile depicted for the solution of Eq. (18) at three different 

dispersions with fixed velocity and particular time. 

The pollutant concentration rapidly 

increases for all three fixed location in the 

aquifer with respect to time as shown in the 

Fig.2. From this Fig. we observed that the 

Pollutant concentration highly increased for 

the particular distance x = 0.25 km as 

compare to the other fixed distances x = 0.5 

and 0.75 km from the beginning of the time 

i.e., 0 2t   years after that time i.e., 

2 2.7t   years, the concentration values 

are higher for the fixed distance x = 0.5 km 

as compare to the fixed distance x = 0.25 

km and 0.75 km.    

Fig. 3 shows that pollutant concentration 

is increases for the particular time t = 3 year 

at the inlet boundary condition, i.e., 0x  , say 

by the deep well injection, agricultural 

drainage wells or industrial activity with 

additional source term. For fixed dispersion 

and different seepage velocities after x = 0.5 

km, 0.7 km and 1 km, pollutant 

concentration decreases and asymptotically 

approached zero, perhaps because of 

remedial measures. In the Fig.3, we observed 

that the concentration values for all three 

velocity profiles starts from 1 mg/l at inlet 
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location of the aquifer. For the distance 

0 0.5x   km, the concentration values are 

higher at each of the position for the low 

velocity profile other than high velocity 

profiles due to effect of the additional source 

function as shown in the Fig. 3 but after that 

distance i.e., 0.5 5x  km the 

concentration values are lower at each of the 

position as well as intermediate position in 

the aquifer domain for the low velocity 

profile as compare to the high velocity 

profiles and the peak contaminant 

concentration moved from additional 

function. Overall, it is quite clear that the rate 

of decrease of the pollutant concentration is 

faster for the low velocity profile along the 

flow direction as shown in the Fig.3. 

The pollutant concentration profile is 

depicted for three different dispersion 

profiles with fixed velocity and particular 

time t = 3 year as shown in the Fig.4. From 

this Fig. it is clearly observed that the 

concentration values start from the inlet 

location of the aquifer domain and sharply 

increased from 0 0.5x   km because of 

additional source function but the peak 

pollutant concentration moved from one 

source function, after 0.5x   km the 

pollutant concentration decreases when 

distance increases and tends to zero for all 

different dispersion profiles. For the fixed 

dispersion coefficient D0=0.05 km
2
/year, the 

concentration values are higher at each of the 

position for this domain i.e., 0 1x   km 

but for the fixed dispersion coefficient 

D0=0.07 km
2
/year, the concentration values 

are higher from the fixed dispersion D0=0.09 

km
2
/year at each of the position for this 

domain i.e., 0 1x   km but lower from the 

dispersion coefficient D0=0.05 
 

km
2
/year.  

But after that distance 1 3x   km, the 

pollutant concentration values for the 

dispersion coefficient D0=0.07 km
2
/year are 

higher from D0=0.09 km
2
/year and lower 

from D0=0.05 
 

km
2
/year at each of the 

position for the same domain as shown in the 

Fig. 4. Overall, the peak pollutant 

concentration for all three profiles moved 

from one additional source function and 

decreases towards the exit boundary.     

The three depicted Figs. 1, 3 and 4, clearly 

indicate that the effect of source-sink term in 

the aquifer domain. The contaminant 

concentration initially starts from the input 

value i.e., x = 0 in the aquifer and 

exponentially increased with distance because 

of the source but after the peak contaminant 

concentration level the concentration value 

decreases asymptotically and tends to zero 

(because of sink term) when distance 

increases of the aquifer domain.        

 

Fig. 5. The pollutant concentration profile depicted for the absence of source/sink function (Eq. (19)) at 

three different times. 
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We depicted the concentration profile in 

the absence of source-sink function of Eq. 

(19) in the Fig.5. From the Fig. 5, we 

observed that the contaminant concentration 

profile initially start from the input value 

i.e., x = 0, it means that the concentration 

value at the inlet location of the aquifer is 

highest but the concentration value 

decreases when distances increases at the 

three particular times. For the long time 

period the contaminant concentration values 

are higher at all position of the aquifer 

domain as well as intermediate position as 

compare to the small time period as shown 

in the Fig.5. It is observed from the Fig. 5 

the rate of decrease of pollutant 

concentration level is faster than for the 

small time and towards the exit boundary.  

For the validation purpose, Van Genuchten 

et. al. (2013) obtained analytical solution for 

the case B1 considered as follows: 

2

2x

C C C
D u C

t x x
 

  
   

  
 (20) 

0
( , ) ( )

t
C x t f x




 
(21) 

0
0

( )xx
x

C
uC D ug t

x






 

  
(22) 

0
x

C

x 




  
(23) 

The analytical solution obtained with 

the conditions ( ) 0if x c  , 0      

and 
0( )g t c  is as follows: 

0( , ) exp
2 2 2xx x

c x ut ux x ut
C x t erfc erfc

DtD tD

      
               

 
(24) 

 This is an identical solution when we 

put 1 20k k   in Eq. (19).  

 

Fig. 6. The comparison of pollutant concentration profile along the flow direction (x) (this study and Van 

Genuchten et. al. (2013)) at three different times. 

Fig.6 plots the curves showing 

concentration between this study and Van 

Genuchten et. al. (2013) in the aquifer at t 

= 3, 3.5 and 4 years with constant 

dispersion and velocity along the flow 

direction. From this Fig. it is quite clear 

that the rate of decrease of pollutant 

concentration is faster for the small time 

period as compare to the long time periods 

as shown in the Fig.6.   The pollutant 

concentration decreases when distance 

increases and towards the exit boundary.   

In the Fig.7, it is observed that, there are 

no pollutant concentration during the 

periods of 0 0.07t   years for the 

particular distance x = 0.25 km, 
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0 0.25t   years for the particular 

distance x = 0.5 km and 0 0.45t   years 

for the particular distance x = 0.75 km but 

after that times the pollutant concentration 

rapidly increases sharply with increasing 

time. Overall, it is observed that the rate of 

increase of pollutant concentration is faster 

for the particular distance x = 0.25 km as 

compare to the long particular distances 

which is shown in Fig. 7.    

 

Fig. 7. The comparison of pollutant concentration profile with increasing time (this study and Van 

Genuchten et. al. (2013)) at three fixed location of the model domain. 

CONCLUSIONS 
An analytical solution of 1-D ADE with 

time dependent dispersion and velocity 

coefficients in an aquifer of semi-infinite 

with an additional source-sink term is 

derived.  The solution is illustrated with 

assumed values of dispersion coefficient 

and velocities. The following points of the 

conclusion are drawn from the solution and 

graphical representation: 

1. Laplace transform is used to obtain 

the closed form analytical solution of 

the ADE.  

2. The source-sink term incorporated in 

the system exhibits its effect after the 

concentration reaches the peak. Then, 

concentration decreases with distance 

rapidly and asymptotically tends to 

zero. This rapidly decreasing effect 

with distance is visible only for the 

additional sink term incorporated in 

the system.   

3. The groundwater pollutant 

concentration increasing with respect to 

time means that pollutant concentration 

after some time increases for the value 

of dispersion and velocity. Since the 

additional function is a strictly 

increasing function with time, the graph 

is realistic with time. Also, the pollutant 

concentration is increasing with respect 

to aquifer distance but after some 

distance the peak contaminant 

concentration decreases as distance 

increases and asymptotically 

approaches zero for the remedial 

measure, namely, sink term. 

4. The contaminant concentration 

profile is sensitive to dispersion and 

velocity coefficients, as for a small 

change in dispersion and velocity 

coefficient an abrupt change in the 

contaminant concentration profile is 

observed.  

5. Overall, it is observed that for the 

small time, the rate of increase of 

pollutant concentration is slower and 

the rate of decrease of concentration 

is faster along the direction of the 

groundwater flow with fixed 
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dispersion and velocity. But for the 

small particular distance the rate of 

increase of pollutant concentration is 

faster and sharply as compare to the 

other particular distances.     

NOMENCLATURE 
Symbols Description 

x Groundwater flow direction [L]  

t Time [T] 

C (x,t)
 Pollutant concentration in the liquid 

phase [ML
-3

] 

D Dispersion coefficient [L
2
T 

-1
]  

u Seepage velocity coefficient [LT 
-1

] 

C0

 
Initial solute concentration [ML

-3
] 

1

0c  
Concentration rate of fluid source 

[ML
-3

 T 
-1

]  

D0

 
Initial dispersion coefficient [L

2
 T 

-1
]  

u0

 Initial seepage velocity coefficient 

[LT 
-1

]  

k1, k2 Flow resistance coefficient [T 
-1

] 

a0, b0 Constant coefficients [L] 
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