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Abstract 
Increasing the pollution rate of water sources is one of the most severe issues that the world faces. 
This issue has stimulated researchers to investigate different treatment methods such as adsorption, 
chemical precipitation, membrane filtration, flocculation, ion exchange, flotation, and electrochemical 
processes. Among them, adsorption has gained broad interest due to its ease of operation, low cost, and 
high efficiency. The critical factor of the successful adsorption treatment process is finding attractive 
adsorbents with attractive criteria such as low cost and high adsorption capacity. In the last few decades, 
nanotechnology has attracted much attention, and numerous nanomaterials have been synthesized for 
water and wastewater treatment. This work provides a quick overview of nanomaterials, which have 
been investigated for water remediation as adsorbent and photocatalyst. This work reviewed 120 articles 
to provide a critical review to determine the limitation of using nanomaterials in water treatment at the 
commercial scale. 
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INTRODUCTION

Treatment of water is an essential process due to the crucial role of water in the life of all 
creatures. There is a rapid increase in the pollution rate due to the fast industrial development, 
which increases the amount of wastewater released to water sources. In addition, the rapid 
increase of the world population is another reason for increasing the pollution rate (Ali and 
Aboul-Enein, 2004). Expanding the world population causes a massive demand for water for 
domestic, industrial, and agricultural fields, which increases the wastewater generated from 
these sectors. There are different pollutants, such as heavy metals, pesticides, dyes, and toxic 
materials. When these materials are released or reach water resources, the results would be 
pollutant water that causes vital impacts on all creatures. These pollutants cause a limitation in 
using water by humans and animals. Thus, the treatment processes are essential to eliminate the 
negative impact of these pollutants on the life of all creatures and the environment.

Several techniques have been used to treat wastewater. These techniques can be classified 
into three main categories which are physical, chemical, and biological treatment. Under these 
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classifications, several methods were used, such as solvent extraction, oxidation, sedimentation, 
gravity separation, ion exchange, micro and ultrafiltration, reverse osmosis, precipitation, 
coagulation, electrolysis, flotation, adsorption, evaporation, distillation, and electrodialysis. 
Among these methods, adsorption has attracted much attention due to the availability of 
numerous types of adsorbents, low cost of the process, simple operation procedure, and the 
ability to use it for different pollutants such as inorganic, soluble/insoluble organic, and biological 
contaminants.

Despite these advantages, adsorption has certain drawbacks, such as its limitation to compete 
with other methods at industrial levels. The main reason for this limitation is the lack of excellent 
adsorbents that provide excellent removal with an extended performance stability to avoid the 
replacement process and the expected cost and time. In addition, it is impossible to use one 
adsorbent for all kinds of pollutants, which limits the commercial application of this method. 
It has been reported that cost-effectiveness comparison of the different treatment methods puts 
the adsorption process in front of other methods (Santhosh et al., 2016). Despite the drawbacks 
of the adsorption process, it is considered a promising method that could be adopted widely on 
the commercial level in the future. Most of the investigations in this field focused on performing 
the treatment process in a batch mode (Matschullat, 2000). Activated carbon was the most 
material that has been investigated as an adsorbent due to its high surface area, which increases 
its adsorption capacity (Mohammed Ali et al., 2022). However, due to its high manufacturing 
cost, there is a need to find a more cost-effective adsorbent material to replace activated carbon. 
Several materials have been investigated, such as agriculture wastes, algae, and nanomaterials 
(Alalwan et al., 2021b; Mohammed Ali et al., 2022). 

The rapid development in the nanotechnology field increased its involvement in different 
applications, covering almost all science and technology sectors (Afluq et al., 2021; Mohammed 
et al., 2021). Nanomaterials have been synthesized and used as adsorbent material for water 
and wastewater treatment (Gautam and Chattopadhyaya, 2016). Recently, researchers paid 
much attention to nano adsorbent materials due to the high promise that they have shown. This 
promise represents a vital opportunity to develop practical solutions for scaling the adsorption 
process to be compatible with commercial requirements. The significant number of publications 
that reviewed or reported experimental results in this field (Al-Furaijia et al., 2021; Kalash et 
al., 2020a; Singh and Batra, 2018; Xu et al., 2012) indicates the importance of providing new 
solutions for the water treatment sector. Thus, this review article focuses on the work published 
in the last ten years and briefly covers the technical applicability of nanomaterials as adsorbents 
to treat water and wastewater. This work aims to summarize and present the significant findings 
of different nanomaterials used in the treatment process. This article provides essential insights 
into this field to enhance the knowledge about this topic. 

Nanomaterials as adsorbents for water and wastewater treatment
Nanoparticles have been used in numerous applications in different sectors such as industry, 

medicine, energy, and the environment (Alalwan and Alminshid, 2020; Alalwan and Alminshid, 
2021; Alalwan et al., 2021a; Alminshid et al., 2021). The application of nanoscale materials as 
adsorbents for pollutants has attracted researchers due to their high active surface with high 
porosity and small size, which resulted in increased surface area. These advantages increase their 
adsorption capacity and enable nano adsorbents to capture pollutants with different molecular 
sizes, hydrophobicity, and speciation attitudes (Amrane et al., 2020). Nano adsorbents have 
several unique criteria, such as their rapid adsorbent rate, considerable pollutant-binding 
capacities, and regeneration ability after being exhausted (Yang and Xing, 2007). Due to these 
criteria also, nano adsorbents show adorable properties, such as catalytic potential and strong 
reactivity, which distinguish them from conventional materials. In addition, the involves of 
highly porous nanoparticles in the adsorption of pollutants have gained more attention. As an 
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example, modified silica nanoparticles were used for phenol adsorption from aqueous solutions 
achieving high removal percentage of 85% at an initial concentration of 10 mg/L of phenol 
(Kalash et al., 2020b). To facilitate the final separation of nano-adsorbents materials to reduce 
the health risk, nanomaterials can be used on their own or incorporated with other adsorption 
material with a bigger size as a base material as will be discussed in the following sections.

Carbon-based nanomaterials
As mentioned before, the most important criteria for adsorbent materials are high surface 

area, pore-volume, and considerable functionality. Thus, the focus is on developing porous 
materials such as activated carbon, zeolites, pillared clays, mesoporous oxides, polymers, and 
metal-organic frameworks. These materials have shown different efficiencies in removing 
contaminants from the water, air, and soil (Gupta and Bhattacharyya, 2012). Carbon-based 
adsorbents have attracted much attention due to their high adsorption capacity and thermal 
stability. Several types of carbon-based adsorbents have been investigated, such as activated 
carbon, fullerenes, carbon nanotubes, and graphene (Rao et al., 2007). Among them, carbon 
nanotubes (CNTs) and fullerene have been widely investigated, but their large-scale use is 
limited due to economic reasons. Thus, lowering the designing cost of these materials is the 
biggest challenge that faces their adoption for commercial use. 

Generally, CNTs consists of cylindrical shape rolled up in a tube-like structure. There are 
two types of CNTs, which are single-walled carbon nanotubes (SWCNTs) and multi-walled 
carbon nanotubes (MWCNTs). SWCNTs consist of a single graphene sheet with a roll-up, while 
MWCNTs consist of multiple graphene roll-up sheets, as shown in Figure 1 (Xu et al., 2018).

CNTs have higher sorption capability and efficiency than ordinary granular or powder-
activated carbon due to their controlled pore size distribution and the higher surface-active sites 
to volume ratio. The adsorption capacity of CNTs correlated strongly to their surface functional 
groups and the nature of the adsorbate. Specifically, the presence of acidic surface groups such 
as carboxylic, phenolic, and lactonic groups enhances the uptake of polar compounds (Wang et 
al., 2008). On the other hand, nonpolar compounds such as polycyclic aromatic hydrocarbons 
are attracted more to unfunctionalized CNT (Stafiej and Pyrzynska, 2008). The adsorption 
mechanism of CNTs usually involves chemical interaction for polar compounds, while physical 
interaction is dominant for nonpolar compounds. Table 1 shows the significant results reported 
in the literature for adsorption processes using CNTs. 

Graphene is another form of carbon nanomaterial that has attracted considerable attention. 
In the last decade, there was a noticeable increase in the application of graphene and graphene-
based nano adsorbent for ecological treatment due to their attractive criteria, which assist in 
increasing the efficiency of several environmental processes. Using graphene as a carbon-based 
nanocomposite depends on different factors such as processability, cost, and environmental 
implications of each material. Graphene oxides (GO) have attracted more attention than 

 

 

 

 

 

 

 

  Figure 1. SWCNTs and MWCNTs shapes (Xu et al., 2018). 
   

Fig. 1. SWCNTs and MWCNTs shapes (Xu et al., 2018).
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ordinary graphene due to the lower manufacturing cost of GO (Santhosh et al., 2016). Graphene 
is an ideal adsorbent for water treatment and a promising alternative for CNTs due to several 
advantages that graphene offers over CNTs. From these advantages, single-layered graphene 
materials have two basal planes active for uptake, while it is hard for adsorbate to reach the inner 
walls in CNTs (Sitko et al., 2013b). In addition, the synthesis processes of GO and reduced GO 
(rGO) are quickly done by chemical exfoliation of graphite without using any catalyst, and no 
further purification step is needed. 

Furthermore, GO has plenty of oxygen-containing functional groups, eliminating the 
need for acidic treatments (Zhao et al., 2011a). This is an essential criterion that CNTs lacks. 
Therefore, acidic treatment is mandatory to supply a hydrophilic feature and reactivity to CNTs 
because those functional groups play crucial roles in the adsorption of metal ions. Besides these 
essential advantages, graphene-based materials possess common attractive properties such as 
high surface area and electron-rich environment. GO showed promising efficiency in removing 
metal ion complexation due to the powerful functional groups on the GO surface. The removal 

Table 1. Significant adsorption results using CNTs as adsorbent materials 
 

No. Type of CNTs Adsorbate 
Maximum capacity 

of adsorption 
(mg/g) 

References 

1 Polymer coated MWCNTs Cu+2 189 (Hosseinzadeh et al., 2018)
2 MWCNTs Co+2 78.94 (Dehghani et al., 2020) 

3 Alkali-activated MWCNTs 
Methylene blue 

(MB) 399 (Ma et al., 2012) 

4 Untreated MWCNTs MB 59.7 (Wang et al., 2012) 

5 Hydroxylated and pristine 
MWCNTs Sulfamethazine 13.31 and 24.78 (Yang et al., 2015) 

6 Untreated MWCNTs Tetracycline (TC) 269.54 (Zhang et al., 2011) 

7 MWCNTs TC 192.7 
(Álvarez-Torrellas et al., 

2016) 

8 CNTs-C@Fe-chitosan 
composite 

TC 104.0 (Álvarez-Torrellas et al., 
2016) 

9 CNTs Pb+2 17.44 at pH=7.0 
(Stafiej and Pyrzynska, 

2008) 
10 CNTs (HNO3) Pb+2 49.95 at pH=7.0 (Li et al., 2002) 
11 SWCNTs Ni+2 9.22 at pH=7.0 (Lu and Liu, 2006) 
12 MWCNTs Ni+2 7.53 at pH=7.0 (Lu and Liu, 2006) 
13 Untreated SWCNTs Reactive red 120 426.49 (Bazrafshan et al., 2013) 
14 Oxidized SWCNTs Basic red 46 49.45 (Moradi, 2013)

15 SWCNTs 
4-Chloro-2-
nitrophenol 1.44 (Mehrizad et al., 2012) 

16 MWCNTs 4-Chloro-2-
nitrophenol 

4.42 (Mehrizad et al., 2012) 

17 Untreated SWCNTs Dissolved organic 
matter (DOM) 26.1 – 20.8 (Lou et al., 2011) 

18 KOH activated MWCNTs 
Toluene, 

ethylbenzene, and 
m-xylene 

87.12, 322.05, and 
247.83 

(Yu et al., 2012) 

19 MWCNTs Methyl orange 52.86 (Zhao et al., 2013) 
20 Chitosan/Fe2O3/MWCNTs Methyl orange 66.90 (Zhu et al., 2010) 
21 Calcium alginate/MWCNTs Methyl orange 12.5 (Zhu et al., 2010)

 
  

Table 1. Significant adsorption results using CNTs as adsorbent materials
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process is done through electrostatic and coordinate approaches (Yang et al., 2010). Several 
investigations have been done on applying graphene-based materials to remove inorganic 
species from wastewater (Zhao et al., 2011a). Many of these investigations have determined the 
ability to use GO as a typical adsorbent for metal ions in aqueous solutions based on the cost, 
process efficiency, and environmental implication (Sitko et al., 2013a). Specifically, GO propose 
more realistic potentials compared to ordinary graphene due to GO’s lower manufacturing 
costs. Composites of GO and metal oxides have shown promising efficiency for removing metal 
ions and organic pollutants from aqueous solutions, as shown in Table 2, which listed some of 
the significant results reported in the literature. However, there is still a lack in investigating the 
toxicological effect of GO.  

Carbon is also recently involved in manufacturing of some other adsorbents such as MXenes, 
which are a group of two dimensions (2D) thin layer structure materials bonded to each other. 
MXenes basic formula is Mn+1XnTx, where M, n, X, and T are a transition metal, number ranges 
between 1 to 3, carbon or nitrogen, and a functional group, respectively (Sun et al., 2017). The 
preparation of MXene involves etching the middle layers with acids (Szuplewska et al., 2020). 
MXenes have received great attention in the last years due to their attractive properties, such as 
the 2D shape, strong negative charge, and high availability of the activation groups. However, 
their manufacturing cost is still high compared with other adsorbents (Kadhom et al., 2022).

Metal-oxide based nanomaterials
Several metal oxides in the nanoscale have been addressed as promising adsorbent materials 

such as the oxides of manganese, aluminum, iron, titanium, magnesium, and cerium (Wang et 
al., 2020a) due to their high surface area and significant reactivity resulting from their nano-size 

Table 2. Significant adsorption results using GO or GO-based materials 
 

No. Adsorbent Adsorbate Maximum capacity of 
adsorption (mg/g) Ref. 

1 GO-MnFe2O4 Pb+2 673 (Kumar et al., 2014) 
2 GO-EDTA Pb+2 479 (Madadrang et al., 2012)
3 GO/silica/Fe3O4 Pb+2 and Cd+2 333.3 and 166.7 (Wang et al., 2013) 
4 Reduce GO/COFe2O4 Pb+2 299.4 (Zhang et al., 2014) 
5 SiO2-GNs Pb+2 113.6 (Hao et al., 2012) 
6 GO/Mn-doped Fe+3 oxide Cd+2 and Cu+2 87.2 and 129.7 (Nandi et al., 2013) 
7 TiO2/GO Pb+2 65.6 (Madadrang et al., 2012) 
8 GO/Fe3O4/sulfanilic acid Cu+2 50.7 and 56.8 (Hu et al., 2013)
9 GO/Fe3O4/sulfanilic acid Cd+2 55.4 (Hu et al., 2014) 

10 GO/Fe3O4 Cu+2, Pb+2 and Cd+2 23.1, 38.5 and 4.4 (Hur et al., 2015) 
11 GO Pb+2 35.6 (Lee and Yang, 2012) 
12 TiO2-graphene sponge Tetracycline 1805 (Zhao et al., 2015) 
13 GO Doxycycline 398.40 (Gao et al., 2012) 
14 GO Tetracycline 313.48 (Gao et al., 2012)
15 GO Tetracycline 381.77 (Ghadim et al., 2013) 
16 Single-layer GO Ciprofloxacin 379 (Chen et al., 2015) 
17 GO sponge Methylene blue 397 (Liu et al., 2012a) 
18 GO Methylene blue 351 (Bradder et al., 2011) 
19 Porous graphene hydrogel Ciprofloxacin 235.6 (Ma et al., 2015) 
20 GO Oxytetracycline 212.31 (Gao et al., 2012)
21 KOH-activated graphene Ciprofloxacin 194.6 (Yu et al., 2015) 
22 Fe3O4/GO hybrids Methylene blue 167.2 (Xie et al., 2012) 
23 GO-α-γ-Fe2O3 glyphosate 46.8 (Santos et al., 2019) 

 
  

Table 2. Significant adsorption results using GO or GO-based materials
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(Hua et al., 2012). Recent investigations demonstrate that many nano metal oxides (NMOs) 
offer attractive adsorption attitudes towards heavy metals in terms of adsorption capacity 
and selectivity, which helps remove toxic metals efficiently and achieve the prim standards 
(Deliyanni et al., 2009). NMOs have other advantages, such as the fast adsorption kinetics for 
different pollutants. On the other hand, there are some limitations on using NMOs, such as their 
low stability due to the increase in their surface energy resulting from decreasing the size of the 
particles to the nanoscale. This high surface energy makes NMOs tend to agglomerate due to the 
interaction forces such as van der Waals (Pradeep, 2009). Consequently, NMOs would partially 
or even totally lose their elevated capacity and selectivity. Another disadvantage of NMOs is the 
disability of using them in fixed beds or any other flow-through systems due to several reasons 
such as their poor mechanical strength, high-pressure drops, and the complexation of their 
separation from aqueous systems. 

To overcome these obstacles, researchers have been created larger size composites by 
impregnating NMOs into porous supports such as natural materials (including bentonite and 
sand), activated carbon, and synthetic polymeric hosts (cross-linked ion-exchange resins as an 
example) (Ndolomingo et al., 2020; Yang et al., 2018). Also, magnetic NMOs attracts researchers 
due to their ability to remove them from aqueous solutions when applying magnet field on 
them (Zhang et al., 2019). Combining magnetic NMOs with GO or graphene nanosheets (GNs) 
provides an efficient solution to the separation issue associated with graphene (Wang, 2017). 
Also, supporting these NMOs can prevent or lower the agglomeration and restacking of the 
graphene sheets, which enhances the surface area and increases the adsorption capacity (Yang 
et al., 2019). In addition, magnetic nanocomposite adsorbents offer considerable isolation from 
the treatment process for recycling or regeneration (Zhao et al., 2011b). The ability to recycle or 
regenerate the adsorbents is crucial to enhance the efficiency and the cost effect of any treated 
process. Table 3 shows some of the significant results reported in the literature on using NMOs 
as adsorbents. These results show some differences in the adsorption capacities, which might be 
due to the differences in the process conditions such as pH, adsorbate, and temperature or due 
to the synthesis conditions that impacted the characters of the NMOs such as the surface area, 
particle size, and surface chemistry.

Hydrogels (HGs)
Hydrogels have received great attention from the researchers in the wastewater treatment field 

in the last years. HGs are polymeric networks with very efficient functional groups with strong 
binding affinity for different pollutants in water. Their tendency to adsorb high water capacity 
inside its three-dimensional reticulated networks encourages researchers to incorporate it as an 
intelligent material for water treatment (Sinha and Chakma, 2019).

Table 3. Adsorption capacities of NMOs for metal removal. 
 

No. Adsorbent Adsorbate Maximum capacity of 
adsorption (mg/g) Ref. 

1 Goethite (α-FeOOH) Cu+2 149.25 (Grossl et al., 1994) 
2 Hematite (α-Fe2O3) Cu+2 84.46 (Chen and Li, 2010) 
3 Maghemite Ƴ-Fe2O3 Cu+2 26.8 (Hu et al., 2006)
4 ZnO Pb+2 6.7 (Ma et al., 2010) 
5 CeO2 Pb+2 9.2 (Cao et al., 2010) 
6 TiO2 Pb+2 401.14 (Engates and Shipley, 2011) 
7 Modified Al2O3 Pb+2 and Cd+2 100 and 83.33 (Afkhami et al., 2010) 
8 SiO2 Cu+2, Ni+2, and Pb+2 6.35, 0.880, and 5.20 (Manyangadze et al., 2020)
9 Fe3O4 Cu+2 and Pb+2 25.42 and 140.9 (Manyangadze et al., 2020) 

 

Table 3. Adsorption capacities of NMOs for metal removal.
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HGs have high efficiency for the adsorption of a broad type of organic and inorganic 
contaminants, such as metal ions, noxious dyes, and pestilential pharmaceutical wastes (Tang 
et al., 2018). Encouraging results for the application of HGs for capturing and immobilization 
of activated sludge, including microbes, were reported (Yu et al., 2018). HGs are fabricated 
from a series of natural and synthetic monomeric and polymeric units such as starch, cellulose, 
acrylamide (Zhang et al., 2016), polysaccharides viz. chitosan, alginate (Sahraei and Ghaemy, 
2017), rice husk (De France et al., 2017), gums (Ding et al., 2018), cellulose (Gharekhani et al., 
2017). Natural polysaccharides based HGs have some more advantages than that synthesized 
from the synthetic base material such as their availability, bio-renewability, and environment-
friendly impact. These gels contain hydrophilic groups, which are hydrated when contacting 
water resulting in a three-dimensional gel structure (Wan et al., 2016).  

Nanomaterials as photocatalysts
In the last decades, much attention was paid to the treatment of toxic organic compounds by 

photocatalytic degradation method, especially for dyes with TiO2 nanoparticles (NPs) using UV 
or visible light as an alternative method for the traditional biological processes which have low 
efficiency in degrading these toxic compounds (Hoffmann et al., 1995; Hu et al., 2003). In addition 
to UV-irritation, visible light irritation of TiO2 NPs has also gained great attention recently 
(Asahi et al., 2001; Montallana and Vasquez Jr, 2021). Precisely, mesoporous nanocomposite 
consists of Au/TiO2 microspheres that can enhance visible light photocatalytic degradation of 
organic molecules (Rahman et al., 2018). Liu et al. synthesized a bismuth oxyiodine/TiO2 hybrid 
NPs with prominent photoinduced initiation under visible light eradiation, where the organic 
pollutants go through photocatalytic detoxify to CO2 and H2O under visible light eradiation as 
shown in  Figure 2 (Liu et al., 2012b). 

Savage N. and Diallo M. S. synthesized TiO2-SiO2 nanocomposite inside the pore structure 
of a carbonating stone, resulting in a self-cleaning structure material as explained in Figure 
3 (Pinho et al., 2013). This nanocomposite showed outstanding performance in transforming 
organic compounds to CO2 and H2O using UV light. Furthermore, the formed stone showed 
better mechanical performance and durability than conventional TiO2. Despite the advanced 
knowledge in this field, more work is required to scale up the TiO2-based photocatalytic 
degradation process to the commercial level (Savage and Diallo, 2005). Different design 
parameters must be determined to scale up the multiphase photocatalytic process. One of the 
most critical parameters is the regularity in the delivery of light and light intensity inside the 
photocatalytic reactor due to the limitation of the light penetration depth in treating suspensions, 
which is approximately two centimeters. In addition, it is imperative, to provide a high surface 
area for photocatalyst per unit of reactor volume. These aspects require technical developments 
to scale up the laboratory-tested materials to the pilot-scale and finally to the commercial-scale 
level. Thus, several aspects should be addressed well, such as installation of the photocatalyst, 
decreasing of light loss, enhancing reactant-catalyst contact, process temperature, mass transfer, 
flow pattern, and mixing, reaction kinetics. 

 

 

  Figure 2. A schematic diagram explaining the mechanism of treating organic pollutants 

through a reverse microemulsion method using hybrid NPs synthesis of bismuth oxyiodine/TiO2 

(Liu et al., 2012b).  
   

Fig. 2. A schematic diagram explaining the mechanism of treating organic pollutants through a reverse micro-
emulsion method using hybrid NPs synthesis of bismuth oxyiodine/TiO2 (Liu et al., 2012b).
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The photocatalytic degradation mechanism of dyes was investigated by several researchers, 
and several proposals were suggested. One of these proposals assumes that the first step 
in the oxidation process of organic compounds is initiated by the free radicals resulting 
from the electron-hole (e−/h+) pairs at the photocatalyst surface (Kormann et al., 1991). 
Another proposal suggests that the first step is the adsorption of the organic compound by 
the photocatalyst surface followed by the reaction of the organic compound with irritating 
superficial e−/h+ pairs or OH radicals, which results in the final products (Ollis et al., 1984). A 
diversity of reaction mechanisms based on both solution-phase and surface adsorbed species 
leads to various photodegradation kinetics. One of the most remarkable factors in deducting 
the degradation rates is the adsorption step of the organic compounds (Mamy et al., 2015). 
Although a promising photocatalytic efficiency on eliminating different organic compounds 
was reported for semiconductor materials, but their utilization was limited commercially due 
to some drawbacks such as the low stability of these materials and the low efficiency of the 
illumination of light. However, group II–VI semiconductors have been known as promising 
compatible nominees for photocatalysts.

 Several researchers have been explored novel materials with high stability and degradation 
efficiency for different organic compounds under visible light (Li et al., 2011; Yu et al., 2014). 
Shen et al. reported promising activity for prepared ZnCdS NPs uploaded on a two-dimensional 
platform of rGO sheets by a one-pot ionic-liquid-assisted hydrothermal method regarding 
photocatalytic degradation of organic pollutants (Shen et al., 2015). In general, three parameters 
that play the leading role in providing composites with their high efficiency for the photocatalytic 
process. These parameters are light irradiation absorption, pollutant adsorption, and charge 
transportation and separation (Alansi et al., 2018; Kumar et al., 2017). Although utilizing TiO2 
NPs in photocatalytic degradation of organic pollutants has been widely studied, the insufficient 
utilization of solar energy and the need for UV irradiation to activate the process limits its 
commercial application. Thus, ZnCdS, can provide a better response to visible light than TiO2 
NPs due to the higher negative value of its valence band energy, which is lower than that of TiO2 
NPs by 1.0 eV. The lower value of the valence band energy resulted in decreasing the bandgap 
energy, which increased the response to visible light (Hwang et al., 2002). However, due to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3. Schematic diagram explaining the porous structure of carbonate stone covered 

the TiO2-SiO2 nanocomposite synthesized by simple spraying of a sol containing silica oligomers 

and TiO2 NPs (Pinho et al., 2013).  
   

Fig. 3. Schematic diagram explaining the porous structure of carbonate stone covered the TiO2-SiO2 nanocompos-
ite synthesized by simple spraying of a sol containing silica oligomers and TiO2 NPs (Pinho et al., 2013).
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unique characteristics of graphene, it would not only enhance the separation and transport of 
photocarriers but also can result in an elevated conduction band position with a more powerful 
reductive force. 

Different percentages of rGO uploaded to the ZnCdS were used under visible light to evaluate 
the photocatalytic degradation of methyl orange and Rhodamine B (RhB) in an aqueous solution 
(Shen et al., 2015). The results showed that the low percentages of the rGO served better than 
the higher percentage in the photocatalytic degradation of dyes and RhB because increasing the 
rGO content increases its black color, which lowers the photoactivity due to the limitation of the 
light penetration through the reaction solution. Generally, three factors have been reported for 
the promised photocatalytic activity of the rGO–ZnCdS in degrading of organic dye molecules 
using visible-light excitation. These factors are its enhancement for organic adsorption, its ability 
to extend photo-responsive range, and the formation of the rGO–ZnCdS hetero system, which 
has a synergetic impact on its photoactivity (Sudha and Sivakumar, 2015). 

Nanofiltration
One of the effective water-treatment methods is filtration, which uses membranes and 

effectively removes a wide range of pollutants such as heavy metals, organic, and ions. 
Several membrane processes have been developed and showed remarkable efficiency in water 
treatment, which emphasize their commercial applications. Among these types, pressure-driven 
membrane filtration such as ultrafiltration (UF), microfiltration (MF), nanofiltration (NF), 
and reverse osmosis (RO) have attracted great attention in the previous decades. In the last 
decades, nanofiltration (NF) was presented as a solution for some drawbacks of the filtration 
technique (Punia et al., 2021). NF enables molecularly sieving out contaminants from the 
polluted water. The removal efficiency depends on the pore sizes and charges characteristics of 
the nanomembrane (Wang et al., 2020b). This process also has some drawbacks, such as the high 
costs for the production of membrane filters (Al-Furaiji et al., 2020). In the NF process, a pressure 
between 5 and 20 bar is applied to separate solute particles up to the size of 2 nm from solvent, 
but it can sometimes exceed up to 40 bar (Punia et al., 2021). NF-membranes characterization 
relies on the properties of both solute and solvent and the operating conditions of the filtration 
process. According to nanotechnology, the NF membranes can be classified as presented in 
Figure 4. Although these membranes have significant advantages, the most critical drawback 
that minimizes the dependence on them in the filtration process is membrane fouling. This 
problem results from the deposition of a particle or solution on the surface of the membrane. NF 
considers one of the advanced purification methods, which also include ultrafiltration, advanced 
oxidation, microfiltration, and reverse osmosis (RO), and Figure 5 shows the efficiency of these 
methods in eliminating different pollutants that usually exist in the water.

Polyvinylidene difluoride  (PVDF) with MWCNT nanocomposite UF membrane hybrid 
with photocatalytic reactor was also applied to treat of petroleum refinery wastewater. PVDF 
nanocomposite UF membrane was fabricated from pristine and oxidized MWCNT. The process 
involves subjecting the treated wastewater to photocatalytic irritation using UV light in the 
presence of TiO2. This process results in the decomposition of more than 90% of the presented 
organic pollutants by the UV radiation, which is applied for six hours. The next step involves 
passing the feed through the PVDF/MWCNT nanocomposite UF membrane, which can 
increase the removal percentage of the organic matter to more than 99% (Munirasu et al., 2016).   

Environmental Risk
Generally, the most concern related to using nanomaterials is its release to the environment 

and the possible risk behind its contacting the water sources, which can cause secondary toxic 
impacts and the possibility to hurt humans, animals, and other life species (Ghasemzadeh et 
al., 2014). This problem requires close attention from the scientific community. Ensuring the 
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safety of the use of nanomaterials and their potential health impact are severe challenges for 
the emergence of these promised materials. In addition, there should be an identifying for the 
toxicity thresholds of nanomaterials and determining the possibility of applying the presently 
used biomarkers of hurtful impacts in investigating environmental nanotoxicity. Therefore, 
many researchers have been investigated the practicality of applying natural nanomaterials as 
adsorbents. For example, an allophone is a premium adsorbent for several components such as 
copper, 17β- estradiol, and surface-modified smectite adsorbs naphthalene  (Yuan, 2004). All 
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color (allowed to pass), green color (complete removal)(Punia et al., 2021). 

 

 Suspended  

Solid 

Bacteria Virus Multivalent 

Ions 

Monovalent 

Ions 

Water 

Granule media 

filtration  

      

Microfiltration 

(0.1 to 10 µm) 

      

Ultrafiltration 

(Approx. 0.01 µm)  

      

Nanofiltration 

 (1-10 nm)  

      

Reverse osmosis        Pr
od

uc
ed

W
at

er

Fig. 5. Treatment efficiency of different filtration methods. Blue color (partial removal), red color (allowed to pass), 
green color (complete removal)(Punia et al., 2021).



Pollution 2022, 8(3): 995-10131005

these minerals, which exist in the natural soil in nano-size, are of geological and pedological 
nature. 

Current Challenges and Future Perspectives 
There is a critical necessity for the providing of efficient water technologies to guarantee 

an excellent quality of drinking water. Scaling up the laboratory-tested systems to the 
commercial level requires more efforts to supply flexible and adaptable water treatment systems. 
Nanomaterials can provide unique advantages when compared with other water technologies, 
such as their capability to combine several characteristics, forming multifunctional materials 
such as nanocomposite and membranes that enable both the particle retention and elimination 
of pollutants. In addition, nanomaterials display outstanding performance due to their valuable 
properties, such as a high surface area. However, some limitations prevent the successful 
applications of nanomaterials. For example, functionalizing materials with NPs has a risk 
potential, as NPs might be released to the environment, as discussed before. Thus, to reduce 
the health risk, different laws and regulations have been established. One of the technical severe 
drawbacks of nano-engineered water technologies is that they are rarely applied for industrial 
scale due to the poor competitivity with standard treatment technologies in terms of cost 
(Nasrollahzadeh et al., 2021). However, earth-abundant nano-engineered materials supply 
excellent possibilities to develop better and safer candidates shortly, especially for the heavily 
degradable pollutants (Nasrollahzadeh et al., 2021). Biogenic NPs have high potentials due 
to the ingrained greenness and sustainability of the manufacturing processes and their great 
activity in the eliminating of environmental pollutants (Gautam et al., 2019). The improvement 
of developed analytical and imaging methods has enabled different pathways for the evaluation 
and determining of nanosized objects in this field.

CONCLUSIONS 

In this article, involving nanomaterials in the adsorption process for (waste) water treatment 
is reviewed. Adsorption can effectively contribute to environmental remediation. This process 
has gained considerable interest from researchers and even commercially. This review shows 
that a variety of nanomaterials has been investigated for the adsorption of inorganic and, or 
organic pollutants. Several nanomaterials show promising efficiency in removing contaminants, 
which making them a potential alternative to standard remediation technologies. However, 
there are still some drawbacks that limit marketing these materials. These drawbacks are the 
cost-effectiveness of the process, environmental concerns, and technical challenges such as 
scaling up to the industrial level and system setup. In addition, there are some other challenges 
related to the size of these materials, where the separation of nano adsorbents from aqueous 
solutions is a serious issue. Also, the availability of large quantities of nano adsorbents with low 
costs for water treatment destinations can be a severe issue for commercial uses. Furthermore, 
preventing the release of used nanomaterials to the environment is a serious challenge because 
they accumulate for long periods. Despite these drawbacks, nano adsorbents could supply high 
potential in (waste)water treatment and environmental remediation soon.

LIST OF ABBREVIATION
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