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INTRODUCTION 

Mining aims to extract ores and solid substances recoverable at a profit. In general, the 
run-of-mine extracted from the earth needs further mineral processing such as the leaching 
(Revuelta, 2018). As a matter of course, mining operations cover various natural uncertainties 
and application risks. To minimize the natural and operational risks, first of all environmental 
impact assessment is required (Palma et al., 2019). However, either uncontrolled factors like 
earthquakes or incompatible design and working practices like unsafe waste storage induce 
environmental problems like soil and water contamination as well as health risks (Akoto et al., 
2018).   

Extractive mining has crucial importance for providing some fundamental materials used 
by modern society such as construction materials, ceramics, metals and glass. However, the 
mining industry generates egregious volumes of waste. A tailing dam is employed to store the 
mining waste then by separating the concentrate (valuable material) from the gangue (worthless 
material). As tailings can be liquid, solid, or slurry of fine particles, tailings have mostly toxic 
properties. Therefore, building tailing dams to collect and store the wastes is a common risky 
operation in mining and ore processing industries. These dams are usually established by 
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available local materials and concrete (Kossoff et al., 2014). The potential risks of the dam-
break have been discussed in (Gildeh et al., 2021). 

Heavy metal contamination from tailings has become a major concern on account of its 
toxicity (Li et al., 2015). For this reason, many assessments have been made on tailings dam 
failures. The main reasons for the failures have been reported as: weak foundation, slope 
instability, mine subsidence, unexpected rain and snow, and seismic liquefaction (Rico et al., 
2008; Lyu et al., 2019). In practice, trace elements in tailings create contamination both for water 
and soil. Ultimately, river, lake and groundwater and aquifer are generally affected because of 
high concentration of these elements. The influence of tailings dam breaks on plant life, fish and 
terrestrial animals can be harsh (Hudson-Edwards, 2003). 

The impacts of the tailings dam failures on the environment have recently been a hot topic 
in literature. The effects of the Pb-Zn mine tailing dam-break on the degree of environmental 
response from soil properties were assessed (Jin et al., 2015). One of the detailed studies, water 
quality impacts and river system recovery following the mine tailings dam spill in Canada were 
appraised (Byrne et al., 2018). For this purpose, a conceptual model for analysing chemical 
mobilization has been developed. Similarly, the level of heavy metals contamination resourced 
from gold mine tailings in Ghana has been handled by (Sey and Belford, 2019). Different factors 
and indexes have been considered to evaluate the levels of trace element concentrations in the 
sampling sites. In another study, the effect of Radon concentration on human health in a domain 
dominated by failure mine tailings dams in South Africa has been investigated (Moshupya et 
al., 2019). Environmental risk assessment for geochemical distribution was made for a failure 
antimony mine in Serbia by (Randelovic et al., 2019). In this study, multivariate statistical 
analyses have been utilized for analysing the distribution. Most recently, heavy metals released 
by the dam collapse realized in Brazil have been considered (Davila et al., 2019). In this study, 
devastating contamination recorded from four years later when the accident was made has been 
appraised by hierarchical cluster analysis and correlation matrices.

Statistically, evaluation of trace element contamination in an environmental site addresses 
a case-control study based on imbalanced data and in which it is challenging to achieve high 
classification accuracy (Kumar et al 2017). This difficulty is referred to as “class imbalance 
problem” (Komori and Eguchi 2019). Because the appraisal of the impact of the heavy metal 
contamination resulting from tailings dam corruptions by artificial intelligence-based data 
analytics is a requirement for literature, instead of conventional and shrinkage classification 
methods, a new learning algorithm based on mitigating such imbalances and adjusting weights 
for class distributions is focused in this study. For this purpose, the capacity of generalized 
t-statistics for two group classifications is examined in this study. The t-statistic uses the 
standardized difference between the means of the two distributions (Eguchi and Copas, 2002). 
Komori et al. (2015) introduced the generalized t-statistic as an alternative solution for two-
group classification based on asymptotic consistency and normality.

If the U-function is properly determined and some assumptions about residual vectors of the 
estimated linear classifier are satisfied, then the estimation of the parameters is best in terms of 
asymptotical efficiency.

The heavy metal contamination problem has been handled as a two-group (two different 
type trees) classification problem and cause-effect relationships are identified for providing a 
reliable balance differently from the conventional (logistic regression, discriminant analysis) 
and shrinkage-based (Ridge, the Lasso, Elastic Net) classifiers (Igual and Segui, 2017). 
By identifying the difference between the exposing levels of two group trees using a semi-
parametric U-Lasso algorithm, this study aims to make two main contributions to literature. 
At first, the advanced multivariate statistical learning algorithms are enabled for handling the 
devastating environmental problem and the levels of heavy metal contamination in the trees 
have been manifested in this manner. Thus, it has been recorded that use of statistical learning-
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based classification algorithms covers a big capacity for evaluating this problem. The learning 
algorithms’ feature interpretation highlighted the significance of the trace elements needed for 
environmental impact studies. Second, introducing and use of t-statistic-based classification 
algorithm U-Lasso in environmental problems involve a methodological contribution to 
ecological informatics. The performance indicators and experimental results demonstrated the 
notable capacity of the U-Lasso algorithms.

MATERIALS AND METHODS

The mining works like ore dressing produce vast amounts of waste. As the outcomes of 
crushed rocks and processing fluids, tailings remain at the site as a result of the extractive 
mining. The chemical texture of tailings relies on the mineralogy and the content of the 
processing fluids for extracting the economic minerals. Toxicity of trace elements in tailings 
disturbs nature and living in the sense of ecological, nutritional, and environmental sources. 
Permanent contamination in soil and plants is the main outcome of the trace elements in the site. 
As reported by Kossoff et al. (2014), sulphide tailings oxidation includes a potential for metal 
mobilization and acidification. Finally, destructive effects for vegetation, crops and trees are 
recorded. Evaluation of the impact of the trace elements over the trees can be determined using 
the concentrations measured in leafs and soil. 

A cause-effect mapping based on in-situ environmental measurements requires cutting-
edge multivariate analyses of simultaneous independent relationships (Jafarzadeh et al., 2020; 
Tutmez, 2020). Since machine learning provides effective time-tested toolkits for evaluating 
the impacts on ecological components such as water, vegetation, soil and trees (Hsieh, 2009), it 
can be underlined that the identification of mine-based contamination problems using machine 
learning includes a potential both for regression and classification purposes. This study aims 
to conduct a binary classification for inspecting the trace element contamination on the trees 
by shrinkage models.  For analysing contamination intensity and heterogeneity in the site, 
probabilistic density functions and standardized differences can be utilized from a statistical 
learning perspective.  

Statistically, two-group classification considered in this study comprises input variables (trace 
elements) and response variable (tree type). Inputs are composed of numerical concentration 
values and the response is two populations ( ) ( )0 1 and p x p x  having the density functions. 
Providing good discriminant scores and successful classification both in training and testing is 
objected to.

Regularization methods for classification
As a statistical learning approach, regularization obtains a tool to constrain the predicted 

coefficients, which can decrease the variance and reduce out of sample error (Boehmke and 
Greenwell, 2020). The approach is also against overfitting and it corresponds to a shrinkage 
analysis. Three regularization methods such as Ridge, the Lasso and Elastic Net are used both 
for regression and classification purposes (James and  Witten, 2013). 

Ridge classifier
The general matrix solution employed for exhibiting multivariate input-output relationship 

addresses the ridge estimation by an additive small constant:
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the Lasso path was recommended (Hastie & Tibshirani, 2015). 

To perform a feature selection, The Lasso uses simultaneous regularization and it shrinks down the 

model coefficients. The Lasso employs an l1 norm penalty in place of an l2. The coefficients βL̂ can be 

expressed as: 
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Elastic-Net 
 

In comparison with the advantages of the Lasso regularization, it may involve some objections. High 

number of variables compared with observations and high correlations among the variables cause some 

limitations for the Lasso-based analysis (Zou & Hastie, 2005). As a combination of the Lasso and ridge, 

elastic net provides a new basis in sparsity (Khan et al., 2019). Elastic-net permits efficient regularization by 

ridge structure with the feature selection properties of the Lasso (Mokhtia et al., 2020). The integration can 

be formulated as follows: 
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(4) 

 

where, λ1,λ2 are fixed and non-negative. For 𝛼𝛼𝛼𝛼[0,1) the elastic-net penalty is 

 

                                                              𝛼𝛼 = λ2/(λ1+λ2)                                                                                 
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Based on two-step regularization, the following minimization addresses the elastic-net model 
structure (Boehmke and Greenwell, 2020):

  2
1 2

1 1

p p

j j
j j

RSS λ β λ β
= =

+ +∑ ∑                                                                (7)

The l1 norm of the penalty structures a sparse model. In other respects, the quadratic part of the 
penalty conducts the l1 component more stable. In the first step of the two-stage regularization 
for every stationary 2λ , the ridge regression coefficients are specified. After that, the shrinkage 
along the Lasso coefficient estimation path is conducted.

U-Lasso: Generalized t-statistics-based regularization 
In two-group classification, maximization of the standardized difference between the means 

of the two distributions can be performed by t-statistics ( )1 β  . Following statistics is an 
extended version of the univariate t-test:
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The critical points of the multi-group classification performed by t-statistics are symmetry 
of distributions and variance-based optimality. As discussed in (Komori and Eguchi, 2019), 
providing a generalized version of t-statistics is necessary for ensuring optimality, consistency 
and normality. 

 Suppose two populations including pollution measurements { }1 1: 1, ,ix i n= …  are trees 
of the first group (adult) and { }2 2: 1, ,jx j n= …  are trees of the second group (sapling). The 
main motivation is to specify the generalized t-statistic as follows:
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In Eq. (9), U denotes a generator function.  yx  and  yS represent the sample mean and sample 
variance, respectively. Finally, expectation of  ( )UL β  can be adjusted as
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 .                                                                  (10)
 

In Eq. (10), y∑ ,  yµ  and yE  represents the variance, mean, and conditional expectation, 
respectively.

 The Lasso and its variants have gained popularity as they automatically specify the 
effective variables via L1-regularization. As a novel classifier, the U-Lasso has been suggested 
by adding L1-regularization term to generalized t-statistic as follows (Komori et al., 2015):

( ) ( )
1

 
p

U U k
k

L Lλ β β λ β
=

= − ∑ ,                                                               (11)

where ( )1, ,
T

pβ β β= … , ( )UL β  is determined by Eq. (9).  λ is a nonnegative component 
that manages the shrinkage of β. As is in the case with the Lasso, the absolute value of  kβ
procures smaller as λ increases.

RESULTS and DISCUSSION

The application site illustrated in Figure 1, the Guadiamar River Valley is located near the 
Mediterranean Sea and one of Europe’s greatest sulphide mineralizations is found in this region. 
As reported in Domínguez et al. (2008), the collapse of a mine tailing dam in Seville released 
about 4 million m3 of trace element-contaminated sludge into the Guadiamar River in 1998. 
The tailing dam failure had catastrophic ecological and socio-economic results (Grimalt et al., 
1999). A large-scale cleaning and remediation program was performed in the Guadiamar site 
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affected by a mine-spill in 1998 (Madejón et al., 2018a).

Structure Identification and Implementation
As a result of the floods, many contaminants and trace-elements such as Cd, As, Cu, Zn, 

Pb accumulated in the agricultural areas and water. To appraise the destructive effects on soil, 
water and plant, many experimental studies were performed and data sets were generated and 
assessed (Domínguez et al., 2008; Grimalt et al., 1999; Domínguez, 2010; Madejón et al., 
2018b). 

In this study, 116 samples including 11 indicator variables (5 heavy metal concentrations 
measured both in soil and plant leaf as well as pH measurements) and response variable (tree 
type) have been considered. Based on the impacts on two tree types such as adult (coded as 0) and 
sapling (coded as 1), a series of classification experiments have been conducted for identification. 
The analyses were performed based on an experimental and algorithmic framework (Friedman 
et al., 2010). It should be noticed that since this study focuses on providing a reliable statistical 
framework based on environmental data, developing a mathematical model for the contaminant 
transport related to some physical problem is beyond the extent of the study.

To discover the relationships among the pollution indicator variables and tree types, bag 
plots which are the scatter plot variants, have been constructed. In Figure 2, ‘bags’ account for 

 
                                      

Figure 1. Site location map for contaminated province. 
   

Fig. 1. Site location map for contaminated province.
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the box in a box and whisker plot to illustrate outliers. The inner polygon is called a bag, which 
corresponds to the box of a box and whisker plot, representing an area where 50% observations 
exist. The outer polygon and boundary are called a loop and a fence, respectively, which 
distinguish observations from outliers. As seen in Figure 2, there are no outliers for all indicator 

  

Figure 2. Relationships between indicators and tree type. 

  

Fig. 2. Relationships between indicators and tree type.
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variables and the areas of bags are concentrated around the centres (medians) marked in red, 
suggesting relatively small variations and spreads in the data. The shapes of bag and loop show 
correlation between the tree type and the variables. The shapes having upward slopes such as 
Zn-leaf, Cd-Leaf and Cu-Total Soil indicate positive correlations; that having downward slope 
such as pH-Soil indicates negative correlation. 

To perform the experiments using the site data, the first data set was divided into two parts: 
75% (Training) and 25% (Testing). Both conventional methods (Ridge, the Lasso, Elastic-
net) and the suggested method (U-Lasso) have been applied in the same manner of approach. 
To provide stability and make reliable analyses independent from the data heterogeneity, the 
implementations have been conducted 10 times using separately sampled data groups. 

Meta-data analysis and feature interpretation
Figure 3 exhibits the optimized model coefficients obtained by the λ grid values for Ridge, 

the Lasso and Elastic-Net models, the first implementations. From a statistical perspective, 
the solution paths by Ridge show gradual shrinkage as λ takes large values due to the property 
l2 penalty. The next two path plots by Lasso and Elastic-Net show high similarity, indicating 
the tuning parameter 
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 of Elastic-Net is estimated to be around 0. As a whole several 
variables seem to be informative to characterize tree types (adult or sapling).                 

There is a close relationship between good uncertainty diagnosis and successful discrimination 
scores. The U-Lasso considered distributional t-statistic and obtained optimality using different 
function types such as linear-U, auc-U and quadratic-U as well as optimal-U.  Figure 4 illustrates 
the resultant path plots provided by these function structures for the first algorithmic experiment. 
From the perspective of generalized-t statistic with a linear U-function, Cd-Leaf, As-leaf and 
Cu total soil turned out to be informative. When AUC function is used in the generalized-t 
statistic, As-Leaf, Pb total soil, As-Total Soil and Cu-Total Soil remain active even if the penalty 
term λ is large. From the perspective of Fisher discriminant analysis (quadratic U function), Pb 
total soil, Cd-Leaf, Zn total soil and As total soil are selected to be informative. The solution 
paths generated by the optimal-U show very few informative variables except for Cd-Leaf.  

To make a reliable feature interpretation, first variable importance for the shrinkage models 
have been explored. The importance has been designated using the magnitude of the standardized 
coefficients. Figs. 5 and 6 illustrate the feature importance plots for conventional (Ridge, the 
Lasso, Elastic Net) and U-Lasso-based regularization (Linear, Quadratic, Auc, Optimal). The 
largest absolute coefficients of the conventional shrinkage models have been recorded as Ridge 
(Cd-Leaf), the Lasso (Cd-Leaf, Zn-Soil), Elastic Net (Zn-Soil, Cd-Leaf). The U-Lasso models 
underlined the parameters: U-Linear (As-Soil, Zn-Leaf), U-Quadratic (Zn-Soil, As-Soil, Zn-
Leaf), U-Auc (As-Soil, Zn-Soil), U-Optimal (As-Soil, Zn-Leaf). 

The magnitude of the indicators provided by the conventional algorithms indicated that Cd 
and Zn are the principal parameters of the contamination for Leaf and Soil, respectively. There 
is a consensus of all algorithms that “Zn” is the one of the important heavy metals for both soil 
and leaf. With the difference of conventional algorithms, U-Lasso models underline the trace 
element “As” instead of “Cd” as the major indicator variable. As discussed in different studies, 
these heavy metals can be potential threats to a wide range of biota, soil as well as human health 
(Norini et al., 2019; Holtra and Zamorska-Wojdyla, 2020).

Performance evaluation-based benchmarking           
To evaluate the performance of the classification models, one of the effective performance 

measures, AUC (Area Under the ROC curve) was utilized. Because AUC has a common 
insensitivity and also adaptivity to machine learning classification algorithms, it has been 
preferred. For the discriminant function F(x) and threshold value c, AUC can be stated as 
follows:
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 Figure 3. Solution paths for conventional regularization algorithms. 

  

Fig. 3. Solution paths for conventional regularization algorithms.
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where, H(.) denotes the Heaviside function: ( ) 1  0H z if z= ≥  and 0 otherwise. The samples, 
{ }111 1, , nx x…  and { }221 2, , nx x…  correspond for y=0 and y=1, respectively.                                                                                  

AUC represented probabilities and it obtained an aggregate measure of performance across 
all possible classification thresholds. Table 1 summarizes 10 experimental AUC results of both 
conventional and U-Lasso-based classification models. The outcome of the performances with 
variability is presented by Figure 7.

 
 

Figure 4. Solution paths for U-Lasso algorithms. 
  

Fig. 4. Solution paths for U-Lasso algorithms.
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The numerical outcomes exhibited that all the classification models produce identical biases. 
This may be explained by natural variability of site and also spatial heterogeneity. Although the 
Lasso-based models provide simple and interpretable models that contain only a subset of the 
indicators, the results indicate that the Ridge model outperforms the other models. One of the 
main reasons for better accuracy provided by l2 penalty can be explained by the slightly lower 
variance of the Ridge structure. The achievement obtained for classification accuracy is also 
rooted in the bias-variance trade-off. Even though the flexibility of the Ridge model reduces 
with high λ, it also provides decreased variability. 

It should be noticed that the generalized t-statistic-based classifiers, the U-Lasso models 
have remarkable capacity and their performances close to the well-known shrinkage algorithms. 
Practically, if we choose a quadratic U-function in U-Lasso, it is equivalent to Fisher linear 
classification with l1 penalty. If we choose the standard normal distribution function as 

 
 

Figure 5. Variable importance for conventional regularization models. 

  

Fig. 5. Variable importance for conventional regularization models.
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Figure 6. Variable importance for U-Lasso models.                                                          

  

Fig. 6. Variable importance for U-Lasso models.

Table 1. Performance measure for classification models. 
 

 Testing Performance - AUC 
No Ridge Lasso Elastic-Net U-Lin. U-Auc U-Quad. U-Opt. 
1 0.902 0.858 0.858 0.73 0.848 0.848 0.725
2 0.923 0.893 0.893 0.833 0.833 0.833 0.833
3 0.926 0.868 0.916 0.689 0.768 0.758 0.689
4 0.914 0.862 0.876 0.948 0.952 0.943 0.938
5 0.784 0.712 0.755 0.716 0.712 0.731 0.712
6 0.874 0.808 0.843 0.773 0.864 0.828 0.758
7 0.869 0.753 0.803 0.641 0.641 0.641 0.646
8 0.808 0.793 0.798 0.651 0.779 0.774 0.683
9 0.922 0.811 0.872 0.606 0.789 0.822 0.667

10 0.848 0.71 0.814 0.7 0.695 0.695 0.69
Mean 0.877 0.806 0.842 0.728 0.788 0.787 0.734 

 

Table 1. Performance measure for classification models.
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U-function, it is equivalent to maximize the AUC with l1 penalty. These properties are useful 
in various data analysis. Theoretically, the estimation of the parameters is most asymptotically 
efficient if the U-function is correctly calculated and certain residual vector assumptions of the 
estimated linear classifier are met.  Also the semiparametric efficiency of the parameters in a 
more general framework is established in Baek et al. (2018). 

CONCLUSIONS

Mineral processing and beneficiation embody contamination potential due to natural and 
practical risks. As a result of which, heavy metal contamination is recorded by an accident like 
industrial-scale mine waste storage dam failure. Based on the advanced regularization models, 
the pollution problem originated from this mining action has been appraised. The statistical 
evaluation of the trace element contamination stemming from dam tailings was considered 
as a two-group machine learning classification problem and a new supervised regularization 
algorithm U-Lasso model examined and tested as a solution tool. The abilities of both 
conventional shrinkage and the U-Lasso classifiers to distinguish between classes have been 
inspected.

The feature interpretations and the benchmarking analyses on the classification models 
showed that the shrinkage approach is a useful tool to identify and understand the relationships 
and effects in the contaminated site. The studies on feature interpretation revealed that Zn is 
the most influential indicator for the regularization-based effect analysis. Among the shrinkage 
algorithms, the Ridge classifier and l2 penalty become prominent. However, all of the models 
exhibited at least 70% accuracy and this level can be acceptable for a real geosciences model 
due to natural and sampling uncertainties. The classification studies along with meta-data 
analysis demonstrated that as an alternative classier, generalized t-statistic based classification 
(U-Lasso) can provide additional information on the ground of feature interpretation and 

Fig. 7.  AUCs for classifiers.
 

 

Figure 7.  AUCs for classifiers. 
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semi-parametric statistical learning.  Thus, the U-Lasso approach suggests different types of 
classification functions and also additional information for exploring the bounds of the pollution 
on soil, water as well as trees.
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