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INTRODUCTION

Increasing urbanization has raised significant air pollution concerns in big cities and 
developing nations, exacerbated by a substantial urban population (58% in 2018) projected 
to reach 68% by 2050 (Klohe et al., 2021; Vafa-Arani et al., 2014). The use of fossil fuels, 
as the primary source of energy in transport worldwide, aggravates this situation since their 
combustion is the cause of several pollutants, mainly carbon monoxide (CO), sulfur oxides 
(SOx), particulate matter (PM), volatile organic compounds (VOCs), greenhouse gases such 
as carbon dioxide (CO2), methane (CH4), nitrogen dioxide (NO2) among others, making it a 
significant factor in climate change and environmental degradation (Abdelzaher, 2022; Viteri 
et al., 2023).

The primary sources of air pollutants can be broadly categorized into two main groups: 
mobile and stationary sources, so mobile sources are one of the main sources of air pollutants 
(Shahbazi et al., 2022; Upadhya et al., 2024). Addressing this involves replacing old vehicles 
(hardware section) and implementing travel demand management (TDM) strategies (software 
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Mobile sources from administrative service commutes significantly contribute to air pollutant 
emissions in metropolises, underscoring the need for travel demand management (TDM) 
and referral reduction strategies. A software-oriented approach is crucial in metropolises like 
Karaj due to the high commuting volume. Evaluating pollutant emissions across scenarios 
offers insights for effective air pollution reduction strategies. Scenarios aim to assess air 
pollution management, considering software and hardware aspects. Data collection involved 
field interviews and questionnaires for individuals commuting to administrative offices. These 
challenges and considerations informed the classification of the studied vehicle fleet based on 
system types, production years, emission standards, fuel types, and vehicle classes. We designed 
scenarios to minimize standard pollutants by reducing in-person visits to administrative offices 
and replacing the fleet with hybrid and natural gas vehicles. Results were compared with the 
baseline scenario, computing emissions using the International Vehicle Emission Model 
(IVE). The comparative analysis highlighted that substantial pollutant reduction comes from 
combined commuting reduction and a decrease in referral numbers. TDM emerged as the most 
cost-effective strategy, executed with principled planning. In conclusion, this study's scenario 
exploration provides insights for policymakers and urban planners. Adopting a software-oriented 
approach to mitigate air pollutant emissions through commute reduction and strategic TDM can 
significantly enhance air quality and curb traffic-related pollution in cities like Karaj.
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section), prioritizing cost-effectiveness, although software aspects have been less emphasized 
(Siddiqi & Buliung, 2013).

Commuting stands out as the primary and rapidly growing source of air pollutants, serving 
various purposes, including administrative services, resulting in significant traffic (Kissinger & 
Reznik, 2019; Moeinaddini et al., 2017). In Iran, a developing country, increasing transportation 
time, fuel consumption, vehicle numbers, and TDM issues in major urban centers exacerbate 
the situation (Shokohian & Qazi Nejad, 2010).

Diverse strategies and policies have been implemented to enhance air quality and diminish air 
pollutants to control vehicle-related emissions. These include promoting public transportation, 
upgrading fuel quality, adopting emission-compliant hybrid vehicles, fleet replacement, and 
implementing lead-free and low-sulfur petrol (Liu et al., 2020; Velázquez et al., 2023). An 
integral solution involves transportation systems management and TDM techniques, which 
revolve around two primary policies: 1) limiting private car use and 2) encouraging public 
transportation utilization (Fallah Tabati et al., 2018). The main objective underlying these 
policies is to reduce travel demand while decreasing the need to travel. This is realized through 
various approaches, including telecommuting, electronic services, service distribution within 
the city, and TDM during peak hours (achieved by modifying working hours, adjusting public 
transportation frequencies on specific routes, and employing intelligent transportation systems) 
(Batur & Koç, 2017). In TDM, it’s crucial to consider travel purposes and vehicle types, offering 
various alternatives to reduce travel demand and decrease private car usage in transportation 
fleets. (Maleki, 2018). 

Given the significance of economic, environmental, and renewable resource factors, 
emission measurement methods are vital. However, direct measurement, due to its costliness, is 
often replaced by estimation (Abdelzaher et al., 2018; Elkhouly et al., 2021). The International 
Vehicle Emissions (IVE) software, developed with US Environmental Protection Agency 
support in 2007, offers a tailored solution for estimating air pollutant emissions from fuel usage, 
particularly beneficial for developing countries, and outperforms alternatives like COPERT and 
MOBILE (Patiño-Aroca et al., 2022).  

As a result, the IVE model was developed to estimate vehicle emissions globally, emphasizing 
developing nations, with the primary goal of offering an efficient and reliable methodology for 
managing such data (Viteri et al., 2023).

This study addresses the urgent need to reduce air pollutant emissions during administrative 
commutes, particularly in cities like Karaj, where commuting is a significant pollution source. 
It sets three objectives: 1) The primary objective is to use the IVE model to address atmospheric 
emissions from mobile sources, particularly in developed areas like Karaj. 2) Investigating 
the benefits of natural gas and hybrid vehicles in Karaj to tackle environmental challenges 
and increased fossil fuel use. 3) Another important objective includes evaluating the potential 
reduction in referrals to administrative services, with the strategic goal of minimizing commute 
and aligning with the broader goal of optimizing administrative processes to reduce overall 
travel in the form of TDM. 

This research uniquely focuses on Travel Demand Management (TDM), commuting, and 
administrative services using the IVE model, examining their interplay with environmental 
concerns. It proposes smart city solutions to reduce costs and unnecessary visits to administrative 
centers by improving citizen facilities and services.

MATERIAL AND METHODS

Study of area
Karaj, the capital of Alborz province, has a population of 2,512,737 (2015) and is located 

east of the province. The city witnesses approximately 3,000,000 daily commuting trips, 
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accommodating about 364,000 passengers (excluding drivers). Daily vehicular trips in the city 
and suburbs total 1.6 million and 0.3 million, respectively (Karaj, 2014).

Field survey
A survey was conducted from February to May 2022 using both in-person and online 

questionnaires due to the pandemic. 250 questionnaires were administered in person, and an 
additional 250 were completed online by individuals accessing administrative services centers 
in Karaj. The questionnaire covered personal information, vehicle usage, and suggestions for 
reducing referrals to administrative centers. The statistical population comprised 36% women 
and 64% men, with only 13% using public transportation for their commute, and the average 
travel distance was 15 minutes. Participants recommended prioritizing city-wide public 
transportation, implementing intelligent services, and establishing cyclist-friendly paths to 
improve air quality and alleviate traffic congestion.

Emission estimation
The data related to road vehicles encompasses factors such as vehicle count, vehicle type, 

age, fuel, and emission control technologies (Gao et al., 2020a). This study focuses on mobile 
fleet sources related to administrative services, collected from commuting referrals accessing 
administrative offices. It utilizes the IVE model, considering engine technology, emission 
control devices, driving behaviors, and vehicle emission factors to compute vehicle emissions 
(Wang et al., 2008). 

Vehicle Fleet Composition
The study of vehicle technologies is one of the most pivotal aspects of vehicle emissions 

analysis (Wang et al., 2008). The field study data concerning driving behaviors is essential 
to accurately estimating vehicle emissions, and it should be considered in the total vehicle 
emission classification as these emissions are significantly influenced by driving behaviors (Fu 
et al., 2013). Furthermore, for power calculation using GPS data and Google Maps, second-
by-second speed, height, and distance values were collected for different vehicle categories 
across various road types and times of day, with a priority on peak traffic hours to achieve 
comprehensive representation (Viteri et al., 2023). The collected GPS data, which represents 
actual driving behaviors, was integrated into emission prediction models like IVE, along with 
local temperature and humidity data (Pathak et al., 2016). The methodology aims to capture 
accurate power calculations for emissions assessment. In the IVE model, the Variable Specific 
Power (VSP) was adapted as a pivotal power-related parameter closely related to emissions 
production. The calculation methodology for VSP is shown in equation (1) (Outapa et al., 2017).

( )( )( ) 3* 1.1 9.81 atan sin 0.132 0.000302VSP V a grade v = + + +    (1)

Where v is the vehicle velocity, a is the vehicle acceleration, and grade is the road slope. The 
following equations (2, 3, and 4) show how to estimate engine stress (Hao et al., 2015; Shahbazi 
et al., 2016):

( )   0.08 *   2tonEngine Stress RPM Index Preave Power
KW

 = + 
   

(2)

( ) ( )  3
)

KWPreave Power Average VSP
ton

 
=  

   
(3)
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( )  4
 

VelocityPRM Index
Speed Divider

=
 

(4)

In this study, a comprehensive analysis of the fleet composition was conducted through 
a field survey, encompassing diverse fuel types, various systems, production years, emission 
standards, and vehicle classes (engine volume or weight). Fleet emission rates were computed 
using the IVE database of the emission rates for each vehicle technology. Additionally, the 
investigation considered real-world driving behaviors influenced by drivers and distances to 
administrative service offices. Dynamic variables such as road length, obstacles, traffic timing, 
and average emission factors for CO, VOCs, NOx, SOx, and PM emissions were calculated for 
diesel, petrol, natural gas, and hybrid-fueled vehicles (Johnson, 2014; Shahbazi et al., 2016).

 
RESULTS AND DISCUSSION

Inventory Vehicle Emissions 
Fig. 1 visually presents the fleet composition information extracted from the IVE model.
As described in the methodology, Fig. 1 depicts the fleet composition input into the IVE 

model. In Fig. 1, the fleet composition is as follows: 77% of the fleet comprised petrol vehicles 
(the most used fuel), 5.2% were diesel, 3% were hybrid, and 15.4% were natural gas vehicles. 
Among petrol-fueled vehicles, 44.3% covered distances exceeding 161 km, while 23.4% 
traveled between 80-161 km, and 9.4% traveled less than 79 km. The entire diesel-fueled fleet 
traveled distances surpassing 161 km. In the natural gas fleet, 1% traveled less than 79 km, 
4% traveled between 80-161 km, and 10.4% traveled more than 161 km. Notably, hybrid-fuel 
vehicles exhibited an equal distribution across the three distance categories (1% each).

As shown in Fig. 2, the estimations pertain to the commute within different fuel categories 
(such as petrol, natural gas, hybrid, and diesel) and are associated with the service and emission 
inventory related to the commute. These estimations were obtained from IVE and are segregated 
according to various fleet categories based on the Euro emission standards. 

 
 
 

Fig. 1. Vehicle fleet composition as the input of IVE model 
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The figure illustrates the emission inventory estimates for morning heavy traffic, categorized 
based on different vehicle groups determined by their Euro emission standards. The IVE model 
is employed for this classification. These estimates are then multiplied by traffic activity data to 
comprehensively assess pollutant emissions.

The results presented in the figure outline the distribution of vehicles with varying Euro 
emission standards across distinct fuel types. The findings reveal that approximately half of 
the petrol-fueled fleet in this study conforms to the Euro 5 standard. Conversely, Euros 1 and 3 
standards make up a smaller percentage. Among the natural gas-fueled vehicles, a substantial 
portion adheres to Euro 5 and 2 standards, while Euro 1 and 3 standards constitute a minor 
share. Diesel-fueled vehicles are categorized into three classes: Euro 1, 2, and 3, with Euro 
2 standards representing the most significant portion. Hybrid-fueled vehicles exclusively fall 
within the Euro 5 and 6 categories, and the Euro 6 standard dominates the composition of the 
hybrid fuel fleet. Furthermore, the Euro 6 emission standard has been solely detected in hybrid 
vehicles, with little to no representation in other types of vehicles. As a result, the calculated 
emissions amount to 87.5 tons/h for CO, 7 tons/h for NOx, 12 tons/h for VOCs, 0.4 tons/h for 
SOx, and 1 ton/h for PM.

From a border perspective, the study finds that CO constitutes the primary contributor to 
emissions by weight, accounting for approximately 81% of total emissions. The remaining 
emissions are primarily composed of VOCs and NOx at approximately 11.11% and 6.52%, 
respectively, with the remaining portion distributed between PM and SOx.

As the result shows, natural gas-fueled vehicles are the primary contributors to emissions 
of VOCs and NOx. Additionally, among petrol-fueled vehicles, private cars and taxis are 
responsible for the highest emissions of CO, VOCs, and NOx. On the other hand, buses account 
for the largest share of emissions in diesel fuel vehicles, particularly in terms of SOx, NOx, and 
PM emissions.

A study conducted by Patiño-Aroca et al. concerning vehicle emissions in Ecuador supports 
these findings. It revealed that CO and VOCs emissions are predominantly attributed to light 

 
 

 

 

Fig. 2. Emission sharing percentage based on the Euro emission standard for fuel categories related to administrative 

services. 
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petrol vehicles, while emissions of SOx, PM, and NOx primarily originate from buses and heavy 
diesel trucks (Patiño-Aroca et al., 2022). The results align with the observations of this study.

This figure and the corresponding findings are valuable for understanding the distribution 
of emissions from different vehicle types and Euro emission standards, which can aid in 
formulating targeted policies and strategies to reduce pollutant emissions from heavy traffic 
and improve air quality.

This is represented in Fig. 3, which depicts criteria pollutants from various vehicle fleets in 
Karaj and summarizes the total values of each pollutant generated by each vehicle category, 
with CO generation being higher than the other pollutants. It is evident that the most polluting 
fleets, consisting of petrol and natural gas vehicles, are significant contributors to the emissions 
of two pollutants: CO (carbon monoxide) and NOx (nitrogen oxides). Specifically, the figure 
shows a breakdown of emissions by different vehicle types based on their fuel source. It 
highlights that petrol-fueled vehicles significantly contribute to CO emissions, whereas natural 
gas-fueled vehicles are the primary sources of NOx and VOCs emissions in Karaj. Furthermore, 
the provided information references an additional study conducted by Gao et al. in the Harbin-
Changchun Megalopolis (HCM), China, and Cuba et al. 2021, which also employed the same 
IVE model (Cuba et al., 2021; Gao et al., 2020b). According to the findings of these studies, 
CO emissions from petrol-fueled vehicles emerged as a significant contributor to urban air 
pollution, paralleling the Karaj study’s outcomes.

Moreover, both Karaj and Gao et al. studies identify diesel-fueled vehicles as the primary 
sources of two pollutants: NOx and Particulate Matter (PM). These emissions from diesel-fueled 
fleets constitute a significant portion of the total emissions in both regions, highlighting their 
substantial impact on air quality. A comparison between the Karaj and HCM studies highlights 
the similarities in emission patterns, particularly concerning the influence of petrol and diesel-
fueled vehicles on CO, NOx, and PM emissions. Also, this situation is similar to that presented 
by the Ministry of the Environment of Peru, where it indicates that the main generators of PM10 
and NOx are diesel-fueled vehicles (MINAM, 2015).  

Furthermore, in the studies by Bari et al., heavy car vehicles are recognized as the primary 
contributors to sulfur oxides (SOx). These emissions from diesel-powered fleets emphasize their 

 

Fig.3. The emission inventory by fuel category for Fleet related to administrative services. 
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significant influence on air quality. A comparison between the Karaj and studies conducted at 
toll plazas in India indicates similarities in emission patterns, specifically concerning the impact 
of heavy car vehicles on SOx emissions. This information can be crucial for policymakers and 
researchers as they work towards implementing targeted measures to reduce specific pollutants 
based on the predominant sources identified in each region (Bari et al., 2023).

Setting of vehicle emission reduction scenarios
The study develops three emission reduction scenarios, considering the current situation 

of vehicle pollutants and strategies for mitigating vehicle emissions. Specifically, this study 
reports on the emission levels of criteria air pollutants such as CO, VOCs, NOx, SOx, and PM. 
These emissions are detailed in Table 1, along with descriptions of the three emission control 
scenarios, which involve reducing in-person administrative centers referrals and replacing the 
hybrid and natural gas fleets.

Establishing the baseline emission scenario requires assessing various control measures, a 
pivotal task in devising effective vehicle emission reduction strategies. The baseline scenario 
(S0) outcomes reveal that commuter vehicle emissions for CO, VOCs, NOx, SOx, and PM 
amount to 46.3, 3.9, 5.7, 0.09, and 0.06 grams per service, respectively. Further analysis of the 
emission reduction scenarios holds promise for enhancing the current state of the fleet in Karaj.

Table 1 shows three distinct scenarios: the current situation (S0), the reduction of referrals 
to administrative offices (S1), and the replacement of the fleet of hybrid and natural gas fuel 
vehicle fleets (S2 and S3). These scenarios aim to encourage individuals requiring transportation 
to reach administrative service offices, and This scenario could explore the impact of adopting 
more environmentally friendly fuel options. This approach is anticipated to lead to a reduced 
frequency of commutes, ultimately contributing to decreased air pollution emissions. The base 
scenario evaluates air pollutant emission reduction in the studied fleet by implementing travel 
demand management practices to reduce referrals. This could include strategies like online 

Table 1. Description of the Scenario Setting 
 

Scenarios  Scenario targets Scenarios Description 
S0  Considering the current emission situation related to fleet-

commutes for administrative services. 
S1 

 
Reduction in referrals per 

service 
S11: Reducing commute through one-time referrals per service.
S12: Reducing commute by 50% through one-time referrals and 

50% through two-time referrals per service. 
S13: Reducing commute by 50% through one-time referrals and 

50% through three-time referrals per service. 
S14: Reducing commute by 20% through one-time referrals and 

80% through two-time referrals per service. 
S15: Reducing commute by 80% through one-time referrals and 

20% through three-time referrals per service. 
S2 Replacing the Hybrid fleet S21: Using 15% of the Hybrid fleet and 5% of the Natural Gas 

fleet
S22: Using 20% of the Hybrid fleet and 10% of the Natural Gas 

fleet
S23: Using 30% of the Hybrid fleet and 20% of the Natural Gas 

fleet
S3 Replacing the Natural Gas 

fleet 
S31: Using 15% of the Natural Gas fleet and 5% of the Hybrid 

fleet
S32: Using 20% of the Natural Gas fleet and 10% of the Hybrid 

fleet
S33: Using 30% of the Natural Gas fleet and 20% of the Hybrid 

fleet
  

   

Table 1. Description of the Scenario Setting



Oveisi and Moeinaddini671

services, appointment scheduling, or centralized administrative service centers to minimize 
travel for administrative purposes.

Analysis of emission reduction scenarios results
As Table 2 shows, in S11, the reduction in the number of vehicles translates to a diminished 

demand for administrative service travel, potentially leading to a 75% reduction in commute 
vehicles. This adjustment holds the promise of curbing PM emissions by 63%. This finding 
aligns with studies by Okokon et al. and Johansson et al., which highlight PM as a pivotal air 
pollutant arising from commuting (Johansson et al., 2017; Okokon et al., 2017).

Furthermore, S11 demonstrates an overall affirmative impact on reducing various air 
pollutants. The effectiveness of curbing CO, VOCs, NOx, and SOx emissions is approximately 
60%, highlighting the significant role of commute reduction in mitigating air pollution.

Within S12 and S14, modifying one-time referrals to 50% and distributing a 20% contribution 
to one-time referrals (per service) and an 80% contribution to two-time referrals (per service) 

Table 2. The Results of the Scenario Development and their Efficiency
Table 2. The Results of the Scenario Development and their Efficiency 

 
 

Scenarios 
Sub-

Scenario Unit CO VOCs NOX SOX PM 

S0  g/service 46/31 3/9 5/7 0/09 0/06 

S1 

S11 
g/service 17/006 0/56 2/11 0/04 0/02 

Efficiency 
(%) -63/28 -63/05 -62/99 -60/72 -63/28 

S12 
g/service 26/076 0/85 3/23 0/05 0/03 

Efficiency 
(%) -43/69 -43/71 -43/33 -39/76 -43/70 

S13 
g/service 34/01 1/12 4/21 0/07 0/043 

Efficiency 
(%) -26/56 -39/4 -26/14 -22/22 -26/57 

S14 
g/service 20/41 0/67 2/53 0/04 0/03 

Efficiency 
(%) -55/93 -55/66 -55/58 -52/86 -55/94

S15 
g/service 30/61 1/00 3/80 0/064 0/038 

Efficiency 
(%) -33/90 -33/50 -33/38 -29/29 -33/91

S2 

S21 
g/service 51/17 1/38 5/23 0/09 0/05

Efficiency 
(%) 10/49 -8/70 -8/29 0/69 -21/10

S22 
g/service 63/45 1/30 5/50 0/08 0/04

Efficiency 
(%) 37/00 -13/76 -3/53 -7/28 -30/86

S23 
g /service 52/76 1/08 4/08 0/085 0/04
Efficiency 

(%) 13/92 -28/36 -28/42 -5/05 -32/43

S3 

S31 
g/service 66/31 1/50 5/85 0/09 0/05

Efficiency 
(%) 43/19 -0/62 2/59 -2/83 -16/14

S32 
g/service 84/61 1/57 6/66 0/08 0/04

Efficiency 
(%) 82/70 4/25 16/86 -11/24 -23/36

S33 
g/service 78/71 1/34 5/72 0/08 0/04

Efficiency 
(%) 41/16 -12/30 0/29 -15/88 -37/72
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showcases observable reductions in various pollutants (around 40-50%). Among these, PM and 
CO emissions exhibit the most pronounced reduction efficiency, with SOx showing relatively 
less reduction efficiency compared to other pollutants.

Table 2 further details the outcomes of S13 and S15, revealing higher emissions compared 
to S11, S12, and S14. Particularly noteworthy is the significant impact on VOCs in S13. Here, a 
50% reduction in one-time referrals coupled with another 50% reduction in three-time referrals 
correlates with increased VOCs emissions per service, while the remaining variables exhibit 
similar emission ranges. In S15, total emissions exceed those of S3, yet an 80% decrease in one-
time referrals and a 20% decrease in three-time referrals yield lower SOx emissions compared 
to other pollutants.

Furthermore, S3 shows the most pronounced impact on emissions increases and exhibits a 
detrimental influence on various pollutant levels. S32, by comparison, demonstrates a lower 
efficiency in reducing emissions compared to other scenarios, with reduction rates for CO, VOCs, 
NOx, SOx, and PM amounting to 82.7%, 4.25%, 16.86%, -11.24%, and -23.36%, respectively.

This scenario aligns with the findings of the study conducted by Xue et al., wherein the 
replacement of fleet vehicles with varying natural gas and hybrid fuel compositions resulted in 
a significant increase in CO emissions (Xue et al., 2022). Interestingly, despite efforts to reduce 
PM emissions from 15% to 37%, this scenario underscores the limitations of hardware-based 
control and air pollution management strategies.

The considerable variation in reduction effects across scenarios can be attributed to the 
notable CO emissions from hybrid and natural gas vehicles (S2 and S3). A similar study by 
Song et al. and Chen et al. also highlighted the elevated presence of CO in hybrid and natural 
gas vehicles (Chen et al., 2024; Song & Hao, 2019). 

According to Table 2, the efficiency of NOx emissions reduction in S3 has increased when 
compared to S1 and S2. This observation implies that replacing the fleet with natural gas and 
hybrid fuels not only fails to mitigate NOx emissions but also results in a 16% increase. This 
trend aligns with the findings of Gao et al. and Li et al. concerning PM emissions (Gao et al., 
2020a; Geng et al., 2013; Li et al., 2021). On the other hand, S2 demonstrates an effective 
reduction strategy by replacing fuel sources, resulting in a 21% reduction in PM and a 28% 
reduction in NOx emissions. This is in line with the conclusions drawn from the research of 
Patiño-Aroca et al., which identified buses as a significant source of NOx and PM10 emissions 
(Patiño-Aroca et al., 2022).

Overall, S1 emerges as the most effective scenario for reducing NOx emissions, with an 
estimated reduction ranging from 25% to 63%. The results highlight a substantial reduction in 
VOCs emissions, decreasing from 3.9 to 0.59 grams per service in S11. The slightest reduction 
in VOCs emissions occurred in S31 (0.62), while an increase was observed in S32 (4.25%). It 
is noteworthy that while S1 exhibits considerable efficacy in emission reduction, S13 shows 
comparatively less reduction due to 50% of referrals being associated with more than three 
times per service.

The analysis outcomes for various scenarios regarding SOx emissions are presented in Table 
2. Notably, after S1 (which entails reduction through referral systems), the scenario involving 
the replacement of the fleet with natural gas fuel (S31) emerges as a pivotal strategy for curtailing 
vehicle-related SOx emissions. This scenario underscores that all varieties of replacing the fleet 
with natural gas fuel yield a decrease in SOx emissions, effectively mitigating their impact on 
air quality. However, it is essential to highlight that the efficacy of SOx emissions reduction in 
S32 and S33 is relatively diminished compared to other strategies. Specifically, the reduction 
rates for SOx emissions in these scenarios are 11.24% and 15.88%, respectively. This indicates 
their lower effectiveness in mitigating SOx pollution than the other strategies explored.

This outcome resonates with the findings of Mohammadiha et al., who emphasized the 
positive impact of fuel quality improvement on SOx and PM emission reduction (Mohammadiha 
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et al., 2018). Throughout the comparative assessment of different air pollutant reduction 
scenarios, S11 emerges as the most impactful policy for curbing PM emissions. This scenario, 
centered around the software sector and transportation demand management (TDM), focusing 
on reducing commuting with one referral per service, consistently remains effective, leading to 
a substantial 63% reduction in air pollutant emissions.

The scenario analysis yields valuable insights into strategies for mitigating emissions 
stemming from commutes. Primarily, reducing people’s referrals per service demonstrates 
its efficacy in decreasing overall commutes and significantly influencing the reduction of PM 
emissions (Hulkkonen et al., 2020). Hence, decision-makers should prioritize TDM strategies 
in this domain to lessen commuting and curb PM and other air pollutants.

Secondly, replacing fleets with hybrid fuels and natural gas is explored. The findings 
underscore that advocating for vehicles utilizing hybrid fuels has a more pronounced impact 
on emissions reduction compared to natural gas fuels (Anser et al., 2023; Vega-Perkins et al., 
2023). These findings further accentuate the positive influence of reducing commutes through 
referral systems and shared transportation options on air pollutant emissions, particularly 
for PM, CO, VOCs, NOx, and SOx. Integrating such scenarios into comprehensive strategies 
can foster improved air quality and the adoption of sustainable transportation practices. By 
embracing measures to diminish commute demand and associated emissions, cities can take 
substantial strides toward creating healthier and cleaner urban environments for their residents 
(Popescu, 2022).

CONCLUSION

In conclusion, utilizing the IVE model has facilitated the creation of one of the initial air 
pollutant emission inventories for commuting in Karaj city. This research reveals that commutes 
for administrative purposes in Karaj produced 46.31 g CO, the predominant pollutant. The 
findings of the base scenario revealed that the emissions of other criteria pollutants in commute 
with the purpose of administrative services in Karaj are 3.9 g for VOCs, 5.7 g for NOX, 0.09 g 
for SOx and 0.06 g for PM10 per service.

Examining three distinct emission reduction scenarios is promising to address the current 
situation of vehicle emissions. These scenarios include reducing people’s referrals (instead 
of several times) by referring once per service and replacing vehicles with natural gas fuel 
and hybrid fuel instead of using diesel and petrol vehicles. After evaluating these scenarios, 
it becomes evident that S1 represents the most optimal strategy within the fleet. This scenario 
is poised to yield the most effective reduction in air pollutants. In this scenario, by reducing 
commutes to one time per service, the overall number of referrals is lowered from 2,000 to 
500 times, and the total kilometers traveled drops from 12,265 to 4,600 kilometers per service. 
This substantial reduction underscores the significant impact of curbing emissions of standard 
pollutants.

Considering that metropolitan areas often witness vehicle fleets contributing significantly 
to CO and NOx emissions, it is reasonable to conclude that S1 emerges as the most suitable 
scenario for reducing pollutant emissions. Furthermore, both S1 and S2 exhibit a noteworthy 
reduction in the emission rate of PM associated with commutes. Additionally, the emission rate 
of NOx sees a considerable decrease, with S1 standing out as the most influential scenario in 
terms of emission reduction across various pollutants.

This analysis demonstrates that reducing commutes to offices per service leads to a substantial 
decline in emissions stemming from mobile sources. Focusing on the software aspect of air 
pollution reduction management has led to further impacts in conjunction with economic cost 
reduction.

The findings emphasize the significance of TDM and travel intent reducing commutes. These 
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elements should not be disregarded when aiming to decrease air pollution. Strategic planning 
and the formulation of strategies to minimize the frequency of commuting play a crucial role in 
emission reduction and control.

Finally, this study also faced challenges in data collection due to the COVID-19 pandemic, 
impacting its efficiency. The reliance on standard scenarios introduces uncertainty in projecting 
future emissions. While recognizing these limitations, the study offers valuable insights, paving 
the way for future research to refine and enhance the accuracy of assessments.
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