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INTRODUCTION

Protecting human health is one of the constant concerns of humanity (Kasim et al., 2023; 
Mohadesi et al., 2024; Saeid & Mohammadkhani Orouji, 2023; Samimi & Nouri, 2023; Samimi 
& Shahriari Moghadam, 2018, 2020). Blood clots in the body can result in serious health com-
plications (Khamooshi et al., 2023; Milani Fard & Milani Fard, 2022). Warfarin is an oral anti-
coagulant drug derived from coumarin that is widely operated to prevent and treat venous and 
arterial thromboembolic disorders (Falkenhagen et al., 2023). Warfarin (4-hydroxy-3-(3-oxo-
1-phenylbutyl) chromen-2-one) inhibits coagulation factors that require vitamin K to function 
by inhibiting vitamin K activity (Connolly et al., 2009). This will reduce the amount of mate-
rial needed to maintain the fibrin filaments in subsequent processes. These events decrease the 
probability of clot formation, bruising or aching toes, sore throat, fever, chills, swelling of the 
feet and legs, fatigue, abnormal weight gain, extensive non-traumatic bruising, nasal bleeding, 
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The existence of warfarin is beneficial for health, but its increase in the human body causes 
toxicity and increases the risk of bleeding. This research focuses on introducing a facile and 
safe fluorescence sensor for warfarin detection in biological samples. The synthesis of the 
fluorescence sensor probe was easily performed with doping metal ions of the Pt to CdTe 
quantum dots. The morphological and optical properties of the synthesized Pt:CdTe quantum 
dots were characterized by FT-IR, TEM, and EDX. The interaction patterns of warfarin 
with CdTe QDs were investigated by the quantum chemical method and compared with 
experimental results. The proposed quantum dots exhibited a blue luminescence with a 28.8% 
quantum yield. Pt:CdTe QDs were used as the fluorescence probe to assay warfarin. This 
procedure is based on the "off" fluorescence of quantum dots in the presence of different 
concentrations of warfarin. Under optimal conditions, the fluorescence sensor probe could 
detect the concentration of warfarin with a wide linear range of 0.1–100 μM and a detection 
limit (S/N = 3) of 0.05 µM. Results of sample analysis by fluorescent nanoprobe displayed that 
this probe could be the potential alternative tool for warfarin detection in biological samples.
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and severe and abnormal bleeding from cuts (Shaik et al., 2016). Overdose of warfarin can 
dilate blood, tear sensitive capillaries, and fill the head with blood, leading to death (Myers et 
al., 2017; Zemrak et al., 2016). Warfarin interacts with many foods such as lettuce, cucumber, 
vegetable oil, and medicines such as aspirin - non-steroidal anti-inflammatory drugs (Desai et 
al., 2017; Ram et al., 2019). Intoxication can be effectively treated with warfarin if the plas-
ma concentration is known. Different analytical techniques including high-performance liq-
uid chromatography (Li et al., 2018) with ultraviolet detection, liquid chromatography-tandem 
mass spectrometry (Shakleya et al., 2019), Transmission Raman Spectroscopy (Griffen et al., 
2018), Thin-Layer Chromatography (de Bairros et al., 2019), Capillary Zone Electrophoresis 
(Nowak et al., 2015) and Differential Pulse Voltammetry (Chang et al., 2019) have been noted 
for measuring of warfarin in the biological samples. 

The gradual pretreatment steps of the experimental and the high cost of examinations by 
mentioned procedures have caused them not to be proper for normal analysis. Hence, choosing 
a substitute procedure with lower operating costs and effective detection speed for assessing the 
low level of warfarin is an important challenge. According to this view, the use of fluorescence 
spectroscopy, as a hopeful procedure, was offered for considerable diagnosis in environmental, 
biochemical and clinical evaluations, etc. (Benson et al., 2023; Cahyonugroho et al., 2022; 
Ehzari, Amiri, et al., 2022; Ehzari et al., 2021; Ibrahim et al., 2023; Mousavi Ghahfarokhi et al., 
2022; Ruf et al., 2019; Samimi & Safari, 2022; Samimi & Validov, 2018). Quantum dots are 
one of the most studied fluorescence sensors in the field of the biological assay (Cheraghipoor 
et al., 2024; Ehzari, Safari, et al., 2022; Safari Fard & davoudabadi farahani, 2022). The semi-
conductor quantum dots are a class of nanocrystal that has received significant interest owing 
to their unique properties, including narrow emission, excitation spectra, immense size-tunable 
photophysical, electrical and high quantum yield, etc. (Baharinikoo et al., 2020; Ehzari & Sa-
fari, 2022). These fascinating properties of QDs make have been widely applied in a variety of 
fields such as constructing ratiometric fluorescence sensors, quantitative detection of drugs and 
bio-imaging (Tan et al., 2020), light sources optoelectronic devices (Jin et al., 2019), and solar 
cells (Ramanujam et al., 2019). As CdTe QDs contain toxic heavy metal cadmium (Al-Azzawi 
& Saleh, 2023; Mohammad et al., 2023; Samimi, 2024; Sulistyowati et al., 2023), they are not 
compatible with biomedical applications (Liu et al., 2022; Noori & Abdulameer, 2022). Doping 
with proper element is widely used as an effective method to tune surface states, energy levels, 
and electrical, optical, structural and magnetic properties of semiconducting materials (Ahmad-
louydarab et al., 2023; Aldokheily et al., 2022; Islam et al., 2022; Mohsin & Ali, 2023). The 
critical role that dopants play in semiconductor devices has stimulated research on the prop-
erties and the potential applications of semiconductor nanocrystals, or colloidal quantum dots, 
doped with intentional impurities (Hamid Abd & Adnan Ibrahim, 2022; Hashim & Ibrahim, 
2023). The use of intentional impurities, or dopants, to control the behavior of materials lies at 
the heart of many technologies. For this reason, researchers have begun to explore how dopants 
can influence semiconductor nanocrystals, crystallites a few nanometers in scale with unusual 
and size-specific optical and electronic behavior. The energy from absorbed photons can be effi-
ciently transferred to the impurity, quickly localizing the excitation and suppressing undesirable 
reactions on the nanocrystal surface.Newly, transition metal ions doped quantum dots (d- dots) 
have been investigated. Doped QDs have added benefits such as less toxicity, longer excit-
ed-state lifetimes, wider stokes shifts, improved stability, and high quantum efficiency. (Liu et 
al., 2019). So far, various transition-metal ions have been doped into II–VI QDs with different 
impurities, including Co2+, Ni2+, Au3+, Zn2+, Ag+, Pd3+, and Mn2+ (Chen et al., 2023; Najafi et al., 
2019). Heavy metals are toxic and dangerous in large amounts (Samimi & Amiri, 2024; Samimi 
& Mansouri, 2024; Samimi & Moeini, 2020; Samimi & Shahriari-Moghadam, 2021; Samimi 
et al., 2023; Shayegan et al., 2022). Doped QDs can reduce the toxic cadmium ratio in undoped 
QDs, improving their biological applicability (Najafi et al., 2019). In this work, a simple flu-
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orescence nanoprobe was presented by doping Pt to CdTe and thioglycolic acid (TGA) as the 
stabilizing reagent. The developed nanoprobe has many advantages, including high sensitivity, 
simplicity, little interference, low toxicity, and accurate measuring result. The Pt:CdTe quantum 
dots (Pt:CdTe QDs) were synthesized by the hydrothermal method. The photoluminescence 
characteristics and morphology of the synthesized Pt:CdTe QDs were investigated and then 
applied as a nanoprobe for the highly sensitive detection of warfarin in plasma samples. The 
effects of various parameters on the analytical performance were also optimized. Moreover, 
the probable fluorescence quenching mechanism of Pt:CdTe QDs induced by warfarin is also 
investigated.

EXPERIMENTAL SUBSTANCES 

Cadmium chloride, sodium chloride, sodium borohydride, H₂PtCl₆·6H₂O, and tellurium 
powder were prepared from Merck (Darmstadt, Germany). Warfarin and TGA were purchased 
from Sigma Aldrich (St. Louis, MO, USA). Other routine chemicals were analytical grade 
purity and were obtained from Merck (Darmstadt, Germany). In addition, Tris–HCl (Tris(hy-
droxymethyl)aminomethane hydrochloride) buffer solutions (1 mM) at various pH values were 
prepared. Sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions have been used the 
adjustment of the buffer solution’s pH (Khorram et al., 2015).

Measurements
The fluorescence quenching measurements were performed with Perkin Elmer (LS55) spec-

trofluorometer (Ogunsipe, 2018). QDs have excitation and emission wavelengths of 500 and 
620 nm, respectively. For all experiments, the slit widths and scan rates were kept constant at 
10 nm and 500 nm/min, respectively. Before measurements, samples were purged with pure 
nitrogen. The measurements were performed using quartz cells ( 4 1 1 cm× × ) with high vacu-
um Teflon stopcocks. The absorption spectra were measured with a JASCO V630 UV–Visible 
spectrophotometer. The IR spectra were recorded using a Fourier transform infrared (FTIR) 
from Thermo Scientific Nicolet IR100 (Madison, WI, USA, ranges of 4000 to 400 cm-1). The 
crystalline structure, shape, and size of the nanoparticles were evaluated using X-ray diffrac-
tion (XRD) (Moulato et al., 2023). The XRD was measured using a PAN analytical X’ Pert Pro 
MPD X-ray diffractometer by Cu Ka radiation k = 0.154 nm with a Ni filter. The tube voltage 
was 40 k with a tube current of 30 mA.

Computational method
The computational models of warfarin, CdTe-TGA, Pt:CdTe-TGA, as well as CdTe-TGA/

warfarin and Pt:CdTe-TGA/warfarin, have been drawn and geometrically optimized by apply-
ing Merck Molecular Force Field (MMFF94) in wave function Spartan 16’ package (Mousavi 
et al., 2019). Following, the use of single-point calculation by applying the parameterized hy-
brid of ab-initio (restricted Hartree-Fock) and semi-empirical quantum mechanical (QM) meth-
od (RHF/PM6) has revealed the optical energy diagram of the corresponding models.

Synthesis of Pt:CdTe quantum dots
The previous procedure was used to synthesize Pt:CdTe NPs (Najafi et al., 2018). Briefly, the 

first step in preparing sodium hydrogen telluride (NaHTe) was to reduce Te powder with NaBH4 
in deionized water under stirring conditions and purging with N2.

The freshly prepared NaHTe nanoparticle was obtained after 3 h. Another flask was prepared 
by dissolving 0.15 g of CdCl2 and 500 μL of H₂PtCl₆·6H₂O (1mM) in 40 ml ultrapure water 
and adding 200 µl of TGA under stirring conditions and adjusting its pH to 10 by adding drop-
wise of NaOH solution (1 M) under N2 purging. Both solutions of free oxygen were mixed and 
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placed in a Teflon-lined stainless steel autoclave, which was heated in an oven at 120 °C for 3 
h. The prepared TGA-coated Pt:CdTe QDs precipitation was washed several times with ethanol 
after the reaction to remove the excess contaminants.

Preparation of the real samples
Fresh human serum samples were taken from the hospital. 1.5 mL of methanol was added to 

3 mL serum; after vortexing of the serum sample for 15 min by centrifugation, the precipitated 
proteins were separated at 1500 rpm for 20 min. The clear supernatant layer filtrated through a 
0.45 mm filter to obtain protein human serum sample and diluted 5 times using twice distilled 
water while its volume was adjusted to 10 mL. Then, the sample was checked for the determi-
nation of the recovery after spiking with known concentrations of warfarin.

Determination of warfarin in urine: 1 mL of a fresh urine sample (healthy human) was filtrat-
ed and then with Tris–HCl buffer diluted to 10 mL, 3 mL of this solution was mixed with 100 
µL Pt:CdTe QDs (1.0×10-3 mol. L-1) and warfarin, after incubation for 2 min, the FL spectra of 
the solution were recorded.

Fluorescence measurements
Warfarin with different concentrations (0.1–100 μM) was added to 2 mL of a solution, con-

taining Pt: CdTe QDs (0.1 mg L−1) in 1mM of Tris–HCl buffer solution at pH = 7.5. After 3 min, 
the fluorescence spectra were recorded at excitation and emission wavelengths of 330 and 557 
nm respectively at room temperature. All the spectrofluorometric experiments were measured 
from 490 nm to 630 nm.

Cell viability assays
The cytotoxicity of Pt: CdTe QDs on fibroblast cells was evaluated by using the activity of 

the lactate dehydrogenase (LDH) method and reported by Linford with some minor changes. 
In this study, the primary culture of human fibroblast was used as a normal cell that is derived 
from the human skin. The cells were seeded in 25 cm2 tissue culture flasks and maintained in 
Dulbecco’s MEM supplemented with inactivated fetal bovine serum 10%, penicillin 100 U 
mL-1 and streptomycin 100 μg mL-1 for 48 h at 37 °C and 5% pCO2.

The cells (in culture medium) were dispensed in 5×103 per well in 96-well microplates and 
allowed to incubate overnight. After 24 h of early cell culture, the fresh medium with NPs at 
concentrations (1.0, 1.5, 2.0, 2.5, 3.0 µM) was renewed. Again, 100 μL of the media from each 
well was then transferred to new 96-well plates and 100 μL of LDH stock was added to each 
well and cells were incubated at 37 °C for 30 min. Triton 1% was used as a positive control for 
the extraction test. The LDH release was estimated using a microplate reader at 495 nm accord-
ing to the manufacturer’s instructions. All measurements were done in triplicate and the mean 
cell viability was expressed as a percentage of the control.

RESULTS AND DISCUSSION

Chemical and morphology analysis of synthesized Pt:CdTe QDs
The UV–Visible absorption and fluorescence spectra of Pt:CdTe QDs were obtained at 25 ℃

. The absorption spectrum of nanoparticles was measured with the excitonic at 525 nm and it’s a 
wide spectrum. As seen in Fig. 1, the QDs fluorescence were emitted at 563 nm upon excitation 
at 330 nm. The Pt:CdTe QDs emit near their absorption onset, indicating that the emission is 
caused by the direct recombination of charge carriers between conduction and valence bands.

The quantum yield (QY) of Pt:CdTe QDs was determined at 28.8 %. QY was attained using 
the comparative approach by applying quinine sulfate (QY=0.546 in 1M H2SO4) as a fluoro-
phore standard at an excitation wavelength of 360 nm. The quantum yield of the Pt:CdTe QDs 
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was increased by 2.1% toward undoped CdTe. Fluorescence emission peaks comparison of 
QDs shows that the red-shift phenomenon has occurred in the Pt:CdTe QDs. This indicates that 
platinum has successfully doped into the Pt: CdTe QDs structure. The particle size of Pt: CdTe 
QDs can be obtained from Eq.1
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where ‘A’ presents the absorbance of excitonic absorption peak for CdTe QDs, ‘c’ is the 
concentration, ‘ℓ’ is the path length of the radiation beam used, and ‘ɛ’ is the molar extinction 
coefficient of CdTe QDs at the first excitonic absorption peak, which was calculated by ɛ = 
10043(D)2.12. D parameter is the QDs particle size. According to Eq. 2, the concentration of the 
prepared Pt: CdTe QDs is 2 mM.

FT-IR was used to investigate the surface functionalization of TGA and TGA-capped Pt:C-
dTe (Fig. 2a). A broad and strong peak at 3441 cm-1 was observed in the TGA-capped Pt:CdTe 
QDs spectrum, which is assigned to O-H bond (stretching vibrations), while this peak is not 
found in TGA. In TGA, the stretching vibrations of the C=O and S-H bonds were observed at 
1716 cm-1 and 2565 cm-1, respectively, while in the spectrum of TGA-capped Pt: CdTe QDs the 
first peak was absent and the second peak was shifted to 1578 cm−1. According to these results, 
TGA was successfully attached onto quantum dots. The morphology and particle size of the 
TGA-capped Pt:CdTe QDs were evaluated via TEM image. As it shown in Fig. 2b the prepared 
QDs with nearly spherical morphology have a uniform size with a diameter about 2 nm. EDX 
analysis (Das et al., 2023) confirmed the elemental composition of the TGA-capped Pt:CdTe 
QDs (Fig. 2c). Pt, Cd, and Te were detected in the prepared QDs. Due to the small concentration 
of doping; the sample contains strong atomic elements of Te, Cd, and Pt. The presence of TGA 
as a capping agent is also indicated by additional signals such as carbon (C), oxygen (O) and 
sulfur (S). As shown in Fig. 2d, the crystal structure of Pt:CdTe QDs was studied with XRD 
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pattern (Ibrar et al., 2023). The XRD pattern obtained for the Pt: CdTe QDs indicates four peaks 
positioned at 2θ = 22.57°, 39.70°, 48.82° and 74.54° that corresponded to (111), (220), (311) 
and (422) planes. Their positions also are consistent with the values of the standard diffraction 
patterns of the cubic structure of CdTe (JCPDS no. 03-065-1046). 

Optimization of operational conditions
To achieve the maximum performance of the proposed nanoprobe, the operational factors, 

such as parameters affecting the fluorescence intensity of Pt:CdTe QDs include reaction time 
and ionic intensity, and pH of solution were optimized. Reaction time is an important factor in 
fluorescence intensity QDs. So, the QDs were synthesized at different reaction times (0, 60, 90, 
120, 180, 240 and 270 min), while the oven temperature was 120℃ . With the growth of CdTe 
QDs, the fluorescence spectrum shifted to longer wavelengths. The maximum emission was 
observed to react at 120 °C for 180 min. When the reaction time exceeded 180 min, the fluo-
rescence intensity decreased, this may be attributed to the oxidation of the stabilizer molecules, 
which led to a reduction in the stabilization of the ligands and an increase in surface defects of 
the QDs (Yu et al., 2012). Stable time Pt:CdTe QDs in an aqueous solution was studied. The 
fluorescence intensity of Pt:CdTe QDs was stabilized after 70 s. Warfarin reaction time was ex-
amined for its effect on the quenching of fluorescence of Pt:CdTe QDs. According to the results, 
the fluorescence quenching of Pt:CdTe QDs after 2 min was sustained in 10 µM warfarin solu-
tion. No change was observed in fluorescence signals of more than 3 min, which indicates that 
the Pt:CdTe QDs system exhibited good stability. Hence, 2 min equilibration time was chosen 
for subsequent experiments. NaCl solution was added to evaluate the effect of ionic strength on 
extraction efficiency. The fluorescence intensities remained constant when NaCl concentrations 
were 2 %. Therefore, the reaction should take place under low ionic strength conditions. The 
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pH plays a significant role in the performance of the Pt:CdTe QDs probe. Therefore, the pH 
effect on the fluorescence intensity in 10 µM of warfarin solution was investigated. Changes 
ΔIF vs pH were reported (ΔIF =IF0 − IF, IF0 and IF represent the fluorescence intensities in the 
presence and absence of warfarin). The maximum fluorescence quenching was observed in pH 
= 6.0. Therefore, pH of 6.0 was chosen for further experiments. The pH/concentration profiles 
of warfarin and TGA at a pH of 6.0 show that dominant forms of warfarin are protonated while 
carboxyl groups of TGA are deprotonated, which indicates that hydrogen bonds play a signifi-
cant role in the quenching mechanism of TGA-CdTe QDs with warfarin. The Tris-HCl and PBS 
buffer solutions were used to evaluate the effect of buffer solution on the reaction of Pt:CdTe 
QDs with drug. To control the acidity interaction of the QDs–warfarin system, a Tris–HCl buf-
fer solution was chosen. The QDs were stored in the dark at 4 °C for evaluating their stability. 
After 3 months, the fluorescence intensity decreased only to 82.25 % of its initial fluorescence 
intensity, which shows a good stability.

Analytical performance of the proposed nanoprobe
To study the sensitivity of Pt:CdTe QDs to warfarin, the changes in fluorescence-quenching 

CdTe quantum dots toward various concentrations warfarin were recorded and the resulted fluo-
rescence spectrogram and its calibration curve are illustrated in Fig. 3. As seen, the fluorescence 
intensity (F/F0) decreased gradually with addition of warfarin concentrations, the quenching 
process of Pt:CdTe QDs with a warfarin could be expressed by the well-known Stern–Volmer 
equation: F0/F = 1+ KSV [warfarin]              

where, F0 and F are the fluorescence intensities of the without warfarin and warfarin pres-
ence, KSV is the quenching constant. In the range of 0.1 to 100 μM, a calibration curve was 
obtained with a regression equation of F0/F = 1.02 + 0.0482 [warfarin] and a correlation coef-
ficient (R2) of 0.9917. The detection limit (3Sb/m) was calculated as 0.05 µM, where Sb is the 
standard deviation of the fluorescence intensity in the absence of warfarin and m is the slope of 
the calibration curve. The repeatability of the system was also investigated and RSD (for n = 6) 
of 3.1% in 10 μM warfarin solution was obtained (Table 1).

Selectivity of the proposed nanoprobe
The selective behavior of the fluorescence chemical sensor is one of its most important fea-

tures. To evaluate the selectivity of the Pt:CdTe QDs for warfarin, the fluorescence response 
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centrations and (b) the linear relationship of F0/F versus concentrations of warfarin over the range of 2–100 μM.
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by the Pt:CdTe QDs in the presence of the foreign substances, which can be found in human 
serum, was recorded. The tolerance limit for external substances was determined as the maxi-
mum concentration of various substances that gave a relative error less than ±5.0% in presence 
of 10 µM of warfarin. The results revealed the presence of glucose, glycine, vitamin K, vitamin 
C, ibuprofen, naproxen and NaCl, KNO3. The interference results indicate no effect on the flu-
orescence intensity of Pt:CdTe QDs.

Suggested mechanism of nanoprobe with warfarin
Generally, the quenching process usually occurs through the dynamic quenching or colli-

sional process and the static quenching, which can be confirmed quenching process by UV-vis 
absorption spectra of QDs in the presence/absence of quencher. In the present work, the Pt:C-
dTe QDs was stabilized by thioglycolic acid. After adding warfarin to Pt:CdTe QDs solutions, 
the surface of Pt:CdTe QDs might be changed and cause the increase of surface defects. Warfa-
rin is a drug that has weak acidity (with a pKa of 5.19). Biologically, it acts as a diprotic acid or 
acid urate ion. As can be seen in Fig. 4a, the structure of warfarin is containing a –OH and C=O, 
that the –OH and C=O are the key role in the fluorescence quenching of TGA-Pt:CdTe QDs. 

 
Table 1. The linear ranges, detection limits and correlation coefficients. 

 

 
 
 
 
 
 
 
  
  

Drug linear range (µM) Detection limits (µM) RSD (%) Correlation coefficients
Warfarin 0.1-100 0.05 3.1 0.9917 

Table 1. The linear ranges, detection limits and correlation coefficients.

 

 

 
 
Fig. 4. a) UV–visible absorption spectra of aqueous solution 3.0 mM Pt:CdTe QDs (5 μL) and 10 μM 

warfarin. b) Stern–Volmer curves for the Pt:CdTe QDs solution system at different temperatures. 

   

Fig. 4. a) UV–visible absorption spectra of aqueous solution 3.0 mM Pt:CdTe QDs (5 μL) and 10 μM warfarin. b) 
Stern–Volmer curves for the Pt:CdTe QDs solution system at different temperatures.
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This could lead to hydrogen bonds forming or electrostatic attraction between warfarin and 
thioglycolic acid coated on the Pt:CdTe QDs and results in an increase in electron localization 
in the QDs due to the compression of the electron wave function. The Stern-Volmer plots of the 
quenching of Pt:CdTe QDs by warfarin at various temperatures are shown in Fig. 4b. According 
to the results, the corresponding Ksv at 293, 298 and 303 K are 3.68, 3.04, 1.99 and 107 L/mol, 
respectively. To investigate the interaction mechanism between Pt:CdTe QDs and warfarin, the 
UV-visible absorption spectra of the Pt:CdTe QDs were evaluated in the presence/absence of 
warfarin. As illustrated in Fig. 4a, when warfarin added to the prepared Pt:CdTe QDs solution, 
the UV–vis absorption spectra showed an apparent increase in the absorption peak centered at 
307 nm, while the absorption peak of the Pt:CdTe QDs decreased at 525 nm. This is indicates 
that warfarin is coordinated with Pt:CdTe QDs. The absorption spectral change is an important 
symbol of static fluorescence quenching.

Analysis of real samples
To evaluate the applicability of the proposed fluorescence probe, a certain amount of war-

farin was spiked in human plasma and urine samples, respectively. Then the warfarin samples 
were detected by a standard addition method. The analytical results summarized in Table 2. The 
result indicated the recoveries were between 96.6% and 105%, suggesting the acceptable accu-
racy of the proposed nanoprobe for warfarin detection. The accuracy of the proposed procedure 
was assessed using calculating the relative standard deviations (RSDs). RSDs were achieved in 
the range from 1.6 to 2.1 %, which reveals the suitable precision of the method for drug moni-
toring via the proposed fluorescence probe.

Theoretical studies of Pt:CdTe QDs
The interaction of CdTe-TGA QDs with warfarin was evaluated by quantum mechanical 

(QM) calculations (Fig. 5). As a QD basis, a typical tetrahedral CdTe model with ten Cd and 
twenty Te atoms was used (Fig. 5B). The Cd-Te bond in this structure has calculated to be 2.77 
Å and the net binding energy of -14819.51 kJ mol-1 has achieved for the CdTe model. The struc-
ture of Pt-doped CdTe QD is shown in Fig. 5C, where one Cd atom at the top of the QD model 
has replaced with one Pt atom, leading to the Pt-Te bond length of 2.74 Å and the net binding 
energy of -15718.61 kJ mol-1. This has also widened the bandgap of the QD model up to 2.66 
eV. Table 1 shows the computational data of the corresponding models consisting of the binding 
energy, the energy of the highest occupied molecular orbital (HOMO), the lowest unoccupied 
molecular orbital (LUMO), and the bandgap. In Fig. 5D and E, the TGA segments are linked to 
the CdTe and Pt:CdTe QD models through Cd-S and Pt-S covalent bonds with lengths of 2.43 
Å and 2.40 Å, respectively. A glance in Table 3 determines the effect of doping the CdTe-TGA 
QD with the Pt atom, which widened the related HOMO-LUMO gap up to 0.21 eV, suggest-
ing a red-shift in the maximum absorption peak of the UV-Vis spectrum for the Pt-doped QD. 
Finally, the interaction of the warfarin analyte with both CdTe-TGA and Pt:CdTe-TGA models 
was investigated. According to Fig. 5F and G, the oxygen-containing functional groups of the 

Table 2. Determination of warfarin in human plasma and urine samples (n = 3). 
 

Sample Added (µM) Total found (n=3) R.S.D (%) Recovery (%) 

Plasma sample 
0 n.da 2.1 0 

20.0 21.0 1.7 105.0 
30.0 29.7 1.6 99.3 

Urine sample 
0 n.da 1.9 0 

20.0 19.3 2.0 96.6 
40.0 41.6 1.8 104.0 

 
  

Table 2. Determination of warfarin in human plasma and urine samples (n = 3).
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warfarin molecules have attracted to the TGA segments of the corresponding QDs through 
hydrogen bonds. In terms of the optical interaction between QD and warfarin, the role of Pt 
dopant in the QD structure become more significant since the interaction of Pt:CdTe-TGA QD 
with warfarin has ca.350 kJ mol-1 lower binding energy (i.e. more stable interaction) compared 
to CdTe-TGA and resulted in wider bandgap equals to 0.14 eV. This phenomenon can also pro-
vide a red shift in the UV-Vis spectrum of Pt:CdTe-TGA/Warfarin versus CdTe-TGA/Warfarin.

Cytotoxicity Analysis
To measure the activity of Pt: CdTe QDs on the fibroblast cells, LDH assay was accomplished 

(Fig. 6). It was found that the Pt: CdTe QDs exhibit dose-dependent cytotoxicity. However, this 
result reveals that the nanoparticles have notable toxicity at 3.0 µM, but, after treatment with 
the lower concentration of Pt: CdTe QDs (i.e. 1.0, 1.5, 2.0, and 2.5 µM) for 48 h, no cytotoxicity 
effects were observed. Nevertheless, the dosage used for experiments is much smaller than this 
concentration which does not have toxic effects.

 

 

Fig. 5. The geometrically optimized structures and molecular orbital energy diagrams of (A) Warfarin, (B) 

CdTe, (C) Pt:CdTe, (D) CdTe-TGA, (E) Pt:CdTe-TGA, (F) CdTe-TGA/Warfarin, and (G) Pt:CdTe-

TGA/Warfarin models. 

   

Fig. 5. The geometrically optimized structures and molecular orbital energy diagrams of (A) Warfarin, (B) CdTe, 
(C) Pt:CdTe, (D) CdTe-TGA, (E) Pt:CdTe-TGA, (F) CdTe-TGA/Warfarin, and (G) Pt:CdTe-TGA/Warfarin mod-

els.

Table 3. The results of semi-empirical computational calculations. 
 

No. Compound Binding Energy/kJ mol-1 EHOMO/eV ELUMO/eV Bandgap/eV
1 Warfarin -435.98 -9.58 -1.18 8.40
2 CdTe -14819.51 -7.46 -4.96 2.50
3 Pt:CdTe -15718.61 -7.84 -5.18 2.66
4 CdTe-TGA -15936.93 -8.45 -6.01 2.44
5 Pt:CdTe-TGA -16348.51 -7.38 -4.53 2.85
6 CdTe-TGA/Warfarin -14300.77 -8.48 -6.01 2.47
7 Pt:CdTe-TGA/Warfarin -14650.54 -8.27 -5.66 2.61

 

Table 3. The results of semi-empirical computational calculations.
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CONCLUSIONS

In this work, the Pt: CdTe QDs synthesized and fully characterized by hydrothermal synthe-
sis. The Pt: CdTe QDs utilized as ratiometric fluorescent sensor for highly selective and sensi-
tive the warfarin in human plasma and urine. The fluorescent sensor was constructed based on 
the quenching effect of proposed nannoprobe during the reaction with warfarin in rang 0.1 to 
100 μM. The advantages of this nanoprobe include facile synthesis, no expensive materials, ra-
pidity, simplicity, and high sensitivity. The presented sensor displayed promising opportunities 
for the quantitative determination of warfarin drug in medical clinics.
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