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INTRODUCTION
 
Agriculture plays a pivotal role in ensuring food security and driving India’s economic 

development. Agriculture serves as the primary occupation and livelihood source particularly 
for the rural populace. The Green Revolution has led to a notable increase in the net irrigated 
area, predominantly relying on both surface and groundwater resources (Ambika et al., 2016). 
It is apparent from the Fig. S1 that, during the period between 1950 and 2018, the extent 
of surface water based net irrigation area is almost remained constant, whereas the extent of 
groundwater based net irrigation area has amplified by more than six-fold. The dependency on 
the groundwater is high in India due to torrential rainfall, lack of surface water management, 
inadequate irrigation infrastructures and vast array of non-perennial river system. The 
overexploitation of irrigation blocks is rising at an unsustainable rate of 5.5% per year, indicating 
an impending crisis in groundwater irrigation in India that necessitates immediate and thorough 
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Sustainability of irrigated agriculture is based on the efficient management of quantity and 
quality of water resources. Water Quality Indices used to assess the suitability of irrigation 
water, however, often consist of uncertainties arise near the class boundaries. Hence, 
the objective of the present study is to classify the groundwater for irrigation purpose in 
Tumkur district, Karnataka, India, using Fuzzy comprehensive evaluation approach for crisp 
classification. The methodology of this study includes collection of 104 groundwater samples, 
assessment of hydrogeochemistry, and classification of groundwater by conventional and 
Fuzzy-logic techniques. Hydrogeochemistry by Piper plot indicates mixed Na-Ca-HCO3 type 
and Gibbs plot indicates the influence of rock-water interactions. The water classification by 
conventional irrigation indices such as Electrical Conductivity, Sodium Absorption Ratio, 
Kelly Index, Percentage Sodium, Residual Sodium Carbonate and Magnesium Hazard 
showed that 2%, 0%, 86.5%, 40%, 25% (post monsoon) and 4%, 2%, 81%, 38.5%, 4% and 
19.2% (pre-monsoon) of groundwater samples were not suitable, respectively. As various 
indices indicated dissimilar results, an integrated conventional index was evaluated by Fuzzy 
synthetic evaluation technique based on the Maximum Principle Membership and Fuzzy Class 
Ratio (FCR) and it showed 3.8 % and 0.98% of samples were classified as Not suitable (N), 
respectively. However, FCR method was found to be effective in dealing variation in fuzzy 
boundary conditions and it showed 0.98%, 1.96%, 1.96%, 1.96% samples as not suitable at 
5%, 10%, 15% and 20% of degree of variation near class boundaries, respectively. 
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intervention (Gandhi & Bhamoriya, 2011; Zaveri et al., 2016). Thus, in this situation, evaluating 
the groundwater quality, extensively utilized for irrigation, becomes vital.  

The quality of groundwater is influenced by its hydrogeochemical reactions with bedrock 
or soil in contact, quality and quantity of recharging water, and other anthropogenic activities 
(irrigation return flow, discharge of untreated or partially treated industrial effluent and sewage) 
(Maghrebi et al.,2021). The major water quality issues in irrigated water that can damage the 
crop growth and soil’s characteristics are Salinity, Sodicity and accumulation of certain toxic 
ions (Ayers & Westcot, 1985; Ayars & Tanji, 1999). Various methods and approaches have 
been adopted to interpret and understand the complex information of the quality of irrigation 
water. The indices such as Electrical Conductivity (EC), Sodium Absorption Ratio (SAR), 
Percentage of Sodium (Na%), Permeability index (PI), Magnesium Hazard (MH), Residual 
Sodium Carbonate (RSC), Soluble Sodium Percentage (SSP), Permeability Index (PI) are 
the major parameters considered for the evaluation irrigation water quality (Mia et al.,2023; 
Gautam et al. 2015). Further, graphical methods such as United States Soil Laboratory (USSL) 
classification system (Richards, 1954); Wilcox system (Wilcox, 1955) were also used to assess 
the irrigation water quality. Water Quality Indices (WQIs) computed through aggregating sub-
indices and assigning weights, offer a comprehensive method for water classification, with 
advanced techniques incorporating Remote Sensing (RS), Geographical Information System 
(GIS) and Multi Criteria Decision Making (MCDM) (Zahedi, 2017; El Behairy et al., 2021; 
Sutradhar & Mondal, 2021).

Nevertheless, though these indices have an advantage of easy estimation of water classification 
through the single valued index, in some cases, especially when handling environment and 
experimental uncertainties, it results in imprecise classification. Each component of water 
quality index, involved with various inherent uncertainties, such as indistinct information about 
the set of parameters, emergence of biases during the sub-indices’ computation and weight 
assignment, ambiguity and vagueness in the output classification for the aggregated values 
nearby boundaries. Additionally, conventional classifications through the index or graphical 
appraches, often leads to binary classifications, introducing challenges in cases where samples 
exhibit near-equal probabilities of belonging to different classes. This imprecision, especially 
in the context of agricultural irrigation, could have impact on crop yield and farmers’ economic 
conditions. Therefore, a sophisticated decision-making approach is necessary to address this 
limitation.

Fuzzy logic emerges as a mathematical solution pioneered by Zadeh (1965), designed 
to navigate uncertainty, ambiguity, and non-linearity. Numerous studies have used fuzzy 
techniques to handle complexities in irrigation water evaluation. Mirabbasi et al. (2008) 
integrated fuzzy inference systems to address uncertainties related to boundary values, while 
Alavi et al. (2010) compared two FIS systems for USSL classification. Chidambaram et al. 
(2022) incorporated fuzzy logic and GIS for irrigation water classification, and Dhaoui et al. 
(2022) employed FIS to develop a Water Quality Index assessing groundwater quality for 
irrigation using multiple parameters. Previous studies have emphasized the efficacy of fuzzy 
logic techniques in addressing gradual variations between classes. However, there remains 
a notable gap in considering a distinctive indicator to precisely specify the level or degree 
of variation at boundaries. This aspect is crucial because the determination of the „type and 
level of variations” relies on evaluator or expert knowledge. Without a well-defined indicator, 
there is a risk of introducing errors or imprecisions in water quality results, especially when 
assessing variations above acceptable limits. Therefore, the present study, introduces a fuzzy 
logic-based index method by considering the specific degree of variation at the boundary line, 
which could improve the quality of irrigation water classifications. The objectives of this study 
are (i) to study the hydrogeochemical characteristics of groundwater (ii) to assess groundwater 
suitability for irrigation purpose using a fuzzy logic-based water quality index.
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MATERIALS AND METHODS
Study area 

The general details of the study area are tabulated in Table. S1. The climate of the region is 
semi-arid tropical, which receives an average rainfall around 700 mm/yr. Both the sub-districts, 
situated in between latitudes of 13° 19’ 4.8” N and 13° 55’ 48” N, and longitudes of 77° 0’ 28.8” 
E and 77° 28’ 15.6” E (Fig. 1) and covering a geographical area of 1.83 thousand hectares out 
of which 63% of the area is agricultural area. 

Agriculture is the primary occupation in this region, focusing on crops such as Maize, 
Ragi, Paddy, Groundnut, Horsegram, and Redgram. While Jayamangali and Suvarnamukhi 
rivers traverse the area, they are non-perennial, so agricultural water needs rely heavily on 
rainfall during monsoon. Groundwater is extensively utilized during non-monsoon seasons. 
Decadal water level data (2008-2018) indicates a 0-2 m rise during monsoons but a >4 m 
fall in summers (Dynamic Groundwater Resources of Karnataka, 2020), highlighting severe 
depletion. Additionally, Table. S1 reveals, this study region exhibits high fertilizer usage 
compared to neighboring sub-districts (Economic Survey report, 2021), implying vulnerability 
to groundwater contamination. Increase rates of groundwater withdrawal leads to issues, such as 
declline of groundwater table, reduction of yield, and deterioration of water quality, influenced 
by natural factors (climate and geology etc), and human factors (agriculture activities), that can 
have devastating effects on regional food security (Central Ground Water Board, 2017, Noori 
et al., 2023). Therefore, a proper groundwater management is essential to protect water quality, 
and ensure its sustainable utilization in this region.
 

 
Fig. 1 Map depicting the sampling locations in the study area 

 

  

  

Fig. 1. Map depicting the sampling locations in the study area
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Sampling and Data Analysis
Groundwater samples were collected from bore wells in October-November 2018 and 

March 2020, representing post-monsoon and pre-monsoon seasons, respectively. A total of 104 
samples (52 from each season) were collected in one-liter polypropylene bottles rinsed with 
double-distilled water. pH, EC, TDS, Temperature, DO, and Salinity were measured using a YSI 
multi- parameter kit immediately after sampling. Major cations (Ca2+, Na+, K+) were analyzed 
using Flame photometry, while major anions (Cl-, F-, SO4

2-, NO3
-) were measured using ion-

selective electrode and UV-visible spectrophotometer. Standard APHA (2012) procedures were 
followed. TA and TH were estimated by titration, and HCO3

- empirically. Data accuracy was 
validated using Ion Balance Error (Domenico & Schwartz, 1990) demonstrating compliance 
within the ±10 limit. Hydrogeochemical characteristics were analyzed using Piper and Gibbs 
diagrams.  Further, Fig. S2 outlines the methodology carried out in this study.

Irrigation water quality classification
The characteristics of irrigation water can be determined by using various parameters, such 

as Electrical conductivity (EC), Sodium adsorption ratio (SAR), Kelly Index (KI), Percentage 
of Sodium (Na%) Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH). The 
formulae for calculations and their criteria for classifying water is given the Table. 1.

Fuzzy Comprehensive Assessment
Fuzzy comprehensive evaluation is one of the effective methods for groundwater quality 

assessment. Studies have utilized this apprach to evalaute groundwater quality (Hao et al., 2012, 
Zhang et al., 2023), emphasizing its ability to manage variability and inherent uncertainties in 
data, and environmental complexities. In this study as well, a water quality index is developed 
using the same approach, with procedural steps detailed as follows.

Step 1: Establishment of parameter sets and determination of standard values  
      The suitable parameters (n numbers) that affects the water quality are represented as a set of 
function as follows (Eq.1).

 = {  1,  2,  3…  n)                                                                      Eq.1

  

Table. 1 Details of the parameters and the criteria of conventional irrigation water classification 
 

Parameters  
Expressions 

Criteria Reference HS S NS HNS 
Electrical Conductivity (EC) 
(in µS/cm) - <1500 1500-

3000 
3000-
6000 >6000 BIS  (1986) 

Sodium Adsorption Ratio 
(SAR) 

 
Na/((Ca+Mg)/2))^0.5 <10 10-18 18-26 >26 

Richards 
(1954); 

BIS (1986)

Kelly Index (KI) Na/(Ca+Mg) - <1 >1 - Kelly (1940) 

Sodium Percentage (%Na) Na+K/(Ca+Mg+ Na+K) >40 40-60 60-80 >80 Wilcox 
(1948) 

Residual Sodium Carbonate 
(RSC) (in mg/l) 

(CO3+ HCO3) - (Ca  + 
Mg) <1.5 1.5-3 3-6 >6 

Eaton 
(1950); BIS 

(1986)

Magnesium Hazard (MH) Mg/( Ca+Mg) - <50 >50 - Paliwal 
(1972) 

Note : HS- Highly Suitable, S- Suitable, NS- Not Suitable, HNS- Highly Not Suitable   

Table 1. Details of the parameters and the criteria of conventional irrigation water classification
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Further, the water classification system for each parameter, consist of different classes (C) 
defined between limit values (λ) based on the standard guideline decision criteria are represented 
by set functions as given in Eq. 2 and  Eq. 3 respectively.  

λ = {λ0, λ1, λ2, λ3…λ (m), λ (m+1)}                                                           Eq.2

C= {C1, C 2, C 3… C(m+1)}                                                                    Eq.3

Where, m is the number of partitioner (i.e. limit values used to derive the classes). Whereas 
λ0 and λ (m+1) are the lower and upper extreme bounds of the classification system. As a general 
rule, for ‘m’ number of partitioner, there will be ‘m+1’ number of classes and the class interval 
value is calculated as C(m) = (λ(m)-λ(m-1)). In this study, for the evaluation of classes for irrigation 
water, the criteria limits given in the Table. 1 have been considered.

Step 2: Construction of Fuzzy Membership Matrix
Fuzzy logic can describe uncertainties of the measured values when approaching near the 

boundary limits with the help of membership function (mf) concept, which normally denoted 
as µ. The association of each element in a fuzzy set defined by mf values between 0 and 1. The 
membership function value of fuzzy set can be expressed as follows Eq. 4.

µA(x) = {µA(x), x ∈ U, µA(x)) ∈ [0, 1]}                                                Eq.4

Where, x is an element of fuzzy set A and belongs the universe of discourse U. In this study, 
the crisp boundary is represented as fuzzy boundary as shown in the Fig. 2. The structure of 
fuzzy boundary is consisting of three point locations; one is the boundary limit point and other 
two points in the anterior and posterior positions to it, denoted as λm , λm

+ and λm
-, respectively. 

The points λm
- and λm

+ represented the values of anterior and posterior points adjacent to the 
boundary limit value λm obtained for a given degree of variation at given boundary limit point 
(λm) and is denoted as δ (given in percentage fractions) using Eq.5.

λm
- = λm – δ.min [(λm - λm-1),(λm+1 - λm)]                                 Eq.5

λm
+ = λm + δ.min [(λm - λm-1),(λm+1 - λm)]                                 Eq.6

 
 

 

Fig. 2 Conceptual details of the boundary condition near the class border values 
  

Fig. 2. Conceptual details of the boundary condition near the class border values
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The values of (λm - λm-1) and (λm+1 - λm) are the class intervals of adjacent classes (denoted 
as Cm and Cm+1) at that boundary limit value λm. In the space between these limits, the gradual 
variation can be demonstrated more efficiently using trapezoidal mf compared to others mfs 
(triangular, Gaussian, sigmoidal etc.), therefore, it has been adapted in this study. This approach 
introduces a notion of crossover of two adjacent trapezoidal mfs at its common boundary point 
as given in the Fig. 2 such that µ (λm) = 0.5. The min function in the Eq.5 and 6 was used to 
minimize the uncertainties evolved due to uneven interval values.  This approach captures the 
fuzziness associated in the boundary system among the parametric values, which is reflected by 
values of degree of membership (µ(x)). Overall, the membership values of any class between 
any two limit values of set  is denoted as (µ(x)) λ is  computed from Eq.7 to 9. Since, the lowest 
and highest classes are associated with the extreme  boundaries i.e. lower and upper bound; 
their corresponding values of (µ(x)) λ are computed using Eq.7 and Eq.8. Whereas (µ(x)) λ 
values for intermediate classes are determined using Eq.9. 

 
                 Eq.7

              Eq.8

   Eq.9

The obtained membership values for jth parameter under ith classification system for “S” 
number of analyzed samples, are represented in a fuzzy membership matrix denoted as λs (Eq.10.) 
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The obtained membership values for jth parameter under ith classification system for “S” number 
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Step 3: Weightage determination               

The weightage factors of various parameters represent the degree of effect of parameters on the 

water quality. To balance both the subjective expertise and objective entropy details of parameter 

values, an integrated-weightage method is employed in this study as it is more desirable in 

weightage computations. The integrated-weight (ω int) is determined by following Eq.11. (Refer 

Supplementary Section 1). 

𝜔𝜔��� = ���������
∑ �������������

         Eq. 11 

Step 4: Fuzzy algorithm                      

In this step, the irrigation classification of water is obtained, which is represented by a degree of 

each classes, expressed as a fuzzy matrix F = {F1, F2, F3…., Fn}. To achieve this, fuzzy 

membership matrix is to be multiplied with a weight matrix as given in the Eq.12.   

        Eq.10

Step 3: Weightage determination         
      The weightage factors of various parameters represent the degree of effect of parameters 
on the water quality. To balance both the subjective expertise and objective entropy details 
of parameter values, an integrated-weightage method is employed in this study as it is more 
desirable in weightage computations. The integrated-weight (ω int) is determined by following 
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Eq.11. (Refer Supplementary Section 1).

1

. 

. 
obj sub

int n
obj subi

ω ω
ω

ω ω
=

=
∑

          Eq. 11

Step 4: Fuzzy algorithm                     
In this step, the irrigation classification of water is obtained, which is represented by a degree 

of each classes, expressed as a fuzzy matrix F = {F1, F2, F3…., Fn}. To achieve this, fuzzy 
membership matrix is to be multiplied with a weight matrix as given in the Eq.12.  
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In this weight matrix (Eq.19) each element indicates the weight of the parameter of interest. Here, 

the weightage values determined using the integration approach (Eq.11) is adapted.  

Fuzzy Based Classifications of Irrigation Water Quality 

In the final stage of developing a water quality index for irrigation suitability, a fuzzy synthetic 

evaluation approach that effectively capture the interaction between considered factors and 

provides more accurate results (Zhang et al., 2019) was employed using two calculation methods 

based on maximum membership function and fuzziness measures. The resulting index values were 

then classified into Highly Suitable (HS), Suitable (S), Not suitable (NS) and Highly Not Suitable 

(HNS) classes.  

Principle of maximum membership function-based classification (Method-1)       

This method is based on principle of maximum membership function, one of the widely utilized 

method for determining the final classification in the fuzzy synthetic evaluation. In this method, 

the fuzzy based classification about the sample is obtained by considering the element in the fuzzy 

matrix that has highest degree of membership i.e. max {F1…m}(Civanlar & Trussell, 1986). For the 

water classification, this method considers maximum value from the set {FHS, FS, FNS, FHNS,}. 

Fuzzy Class Ratio (FCR) (Method-2)                                       

In this method, the fuzzy index values were obtained from the considering the fuzzy measures of 

elements in fuzzy matrix, represented as Fuzzy Class Ratio (FCR) in Eq.14.  

Fuzzy Class Ratio (FCR) 𝐹 �(��������)��(������𝐹��������)
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The FCR values ranges varies from 0 to 100, based on which a system of water classification was 

constructed. The water classification consists of, four classes, Highly Suitable (FCR > 3), Suitable 

(1> FCR>3), Not suitable (0.3 > FCR>1),) and Highly Not Suitable (FCR < 0.3).  

 

   Eq.12
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1
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where ω =∑

In this weight matrix (Eq.19) each element indicates the weight of the parameter of interest. 
Here, the weightage values determined using the integration approach (Eq.11) is adapted. 

Fuzzy Based Classifications of Irrigation Water Quality
In the final stage of developing a water quality index for irrigation suitability, a fuzzy synthetic 

evaluation approach that effectively capture the interaction between considered factors and 
provides more accurate results (Zhang et al., 2019) was employed using two calculation methods 
based on maximum membership function and fuzziness measures. The resulting index values 
were then classified into Highly Suitable (HS), Suitable (S), Not suitable (NS) and Highly Not 
Suitable (HNS) classes. 

Principle of maximum membership function-based classification (Method-1)  
This method is based on principle of maximum membership function, one of the widely 

utilized method for determining the final classification in the fuzzy synthetic evaluation. In this 
method, the fuzzy based classification about the sample is obtained by considering the element 
in the fuzzy matrix that has highest degree of membership i.e. max {F1…m}(Civanlar & Trussell, 
1986). For the water classification, this method considers maximum value from the set {FHS, FS, 
FNS, FHNS,}.

Fuzzy Class Ratio (FCR) (Method-2)                                       
In this method, the fuzzy index values were obtained from the considering the fuzzy measures 
of elements in fuzzy matrix, represented as Fuzzy Class Ratio (FCR) in Eq.14. 
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Fuzzy Class Ratio (FCR) ( ) ( )
( ) ( )

 
    

F Suitable F highly suitbale
F Not Suitable F highly not suitbale

+
=

+
                  Eq.14

The FCR values ranges varies from 0 to 100, based on which a system of water classification 
was constructed. The water classification consists of, four classes, Highly Suitable (FCR > 3), 
Suitable (1> FCR>3), Not suitable (0.3 > FCR>1),) and Highly Not Suitable (FCR < 0.3). 

RESULTS AND DISCUSSION
General Hydrogeochemistry

Piper trilinear diagram (Piper, 1944) is plotted to interpret the hydrogeochemical characteristics 
of groundwater in the study area (Fig. 3a). The results revealed that the groundwater types 
in this region are dominated by mixed Na-Ca-HCO3 water type (54% samples during both 
the seasons) followed by Na-Cl (25 % samples in post monsoon and 33 % samples in pre-
monsoon) and Ca-HCO3 (21 % samples in post monsoon and 13 % samples in pre-monsoon). 
It is observed that, alkaline (Na+ and K+) is dominating over the alkalis (Ca2+ and Mg2+) among 
cations whereas HCO3 dominating over other anions. The presence of these ions in groundwater 
is due to the dissolution underlying rocks or soil and other anthropogenic activities. Further, 
Gibbs diagram (Gibbs, 1970) is plotted to understand the influence of Rock–water interaction, 
Evaporation - Crystallization, Precipitation on the geochemistry of groundwater (Fig. 3 b-c). It 
is observed that most of the groundwater samples are influenced by of Rock–water interaction 
during both the pre and post monsoon seasons.    

Irrigation Water Quality
Evaluation of suitability of groundwater for irrigation purpose is carried out by comparing 

the indices values with the Bureau of Indian Standards (BIS, 1986) as given in Table. 1. Indices 
exceeding the standards cause effects on soil health such as excess salt accumulation, increases 
pH and inhibits the movement of water into the root zone. Fig. 4 shows seasonal variation 
(post and pre-monsoon) of these irrigation indices. The percentage distribution as per two 
classification system (general and specific) is given the Table. 2. It was observed that, based on 

 
 

 

Fig. 3 (a) Piper diagram depicting the groundwater types and Gibbs diagrams based on ratios of 

(c) cation (b) anion to identify the dominance factors controlling groundwater chemistry in the 
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Fig. 3. (a) Piper diagram depicting the groundwater types and Gibbs diagrams based on ratios of (c) cation (b) 
anion to identify the dominance factors controlling groundwater chemistry in the study area
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the EC, SAR, KI, %Na, RSC, and MH indices values, 2%, 0%, 86.5%, 40%, 0% and 25% of 
groundwater samples during post monsoon and while 4%, 2%, 81%, 36.6%, 4%, and 19.2% 
groundwater samples during pre-monsoon are classified as the Not Suitable (N) for irrigation 
purpose. Each index shows different percentage of irrigation water quality classification, which 
provides unclear and indefinite decision about the suitability of water among indices. Further, 
Fig. 4 highlights that, water classification by indices is based on the crisp boundary values, thus 
the samples around the class boundaries are not completely clear of their class association

In order to address above uncertainties, a fuzzy based water quality index is computed by 
integrating the information derived from aforementioned parameters under thier uncertain 
boundary conditions. 

Fuzzy Synthetic Evaluation for WQI         
       The combined effect of different hazards due to Salinity, Sodicity, Alkaline and Magnesium 
in irrigation water is evaluated using the Fuzzy Synthetic evaluation approach. From the Table. 
1 it can be observed that the parameters SAR, %Na, RSC, EC consist of three limit values 
(therefore, four classes), whereas KI and MH consist of only one limit value (therefore, two 
classes). The classes are represented by membership functions between these standard limit 
values (λ). In order to construct membership functions, the values of λm

- and λm
+ are obtained 

using the Eq.5 and Eq.6 respectively for all the parameters. The inclusion of the degree of 

 

 

 

 

 

 

 Fig. 4 Distribution of samples as per different irrigation indices (a) EC (b) SAR (c) %Na 

(d) KI   (e) RSC (f) MH  
  

Fig. 4. Distribution of samples as per different irrigation indices (a) EC (b) SAR (c) %Na (d) KI   (e) RSC (f) MH
Table. 2 Percentage distribution of selected irrigation indices under general and specific classification 

 

Classification EC (μS/cm) SAR KI % Na RSC (mg/l) MH 
Seasons Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre 
Highly 

Suitable 76.9 63.5 82.7 80.8 - - 11.5 17.3 80.8 90.4 - - 

Suitable 21.2 32.7 17.3 17.3 13.5 19.2 48.1 44.2 19.2 5.8 75 80.8 
Not Suitable 1.9 3.8 0 1.9 86.5 80.8 40.4 36.6 0 3.8 25 19.2 
Highly Not 

Suitable 0 0 0 0  - 0 1.9 0 0  - 

 
  

Table 2. Percentage distribution of selected irrigation indices under general and specific classification
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variation (δ) term, in the Eq.5 and 6, is a significant predictor of the outcome variable. It is 
important to note that, it allows the evaluator to choose the appropriate variation, based on the 
uncertainty information about the guideline limits, thus it increases the confidence about the 
evaluation results. When δ=0, in the evaluation, it denotes the crisp classification and therefore 
outcomes reflect those of the traditional water quality index. Further, the provision of 10- 20% 
degree of variation as per FAO guidelines (Ayers & Westcot, 1985) is divided into various 
extents (Ex. 0, 5, 10, and 20%) to obtain the µ values. The formation of membership function 
is given in the Fig. 5 for different parameters. 

Further, the membership values are calculated using Eq.7-9, by adapting the same parameter 
guideline data as given in the Table. 1. Various fuzzy matrices were constructed, representing 
membership values of the parameters in columns (arranged in the order of EC, SAR, KI, %Na, 
RSC, and MH) corresponding to the classes in rows (arranged in the order of Highly Suitable, 
Suitable, Not Suitable and Highly Not Suitable) for each of the analyzed samples. The resultant 
matrices may include both fuzzy (µ values ranged between 0 and 1 under all the parameters) 
and non-fuzzy samples (µ values as either 1 or 0 under all the parameters). The details of fuzzy 
samples in all the indices are given in the Fig. 5.

Further, an integrated assessment of water quality by considering aforementioned parameters, 
a matrix is calculated by multiplying a weight matrix, as given in the Eq.12. The values of 
weightage were estimated by integrating subjective and objective knowledge of the sample 
data in this study. These findings demonstrate the significant differences between subjective 
and objective weights (Refer Supplemenatry Section 2), hence integrated weight is obtained by 
combining both weights using the weighted average method in order to obtain more accurate 
evaluation results, as given in the Table. 3. Based on this the priority of parameters is given 

 
 

Fig. 5 Percentage of fuzziness in the data set, upon considering �arious boundar� �aria�on le�els in the 
class boundaries of (a) EC (b) SAR (c) KI (d) % Na (e) RSC (f) MH 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Percentage of fuzziness in the data set, upon considering various boundary variation levels in the class 
boundaries of (a) EC (b) SAR (c) KI (d) % Na (e) RSC (f) MH
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Table 3. Details of weightage values (ω)
Table. 3 Details of weightage values (ω) 

 
 

 
Parameters 

Relative 
weight 
(ω s1) 

Relative 
weight 
(ω s2) 

Subjectivity 
Weight 
(ω Sub) 

Entropy 
(E) 

Objectivity 
Weight 
(ω obj) 

Integrated 
Weight 
(ω int) 

Seasons Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre
SAR 0.08 0.08 0.21 0.21 0.12 0.14 0.96 0.92 0.08 0.11 0.07 0.10
KI 0.38 0.42 0.07 0.07 0.2 0.24 0.93 0.90 0.12 0.14 0.18 0.21
%Na 0.23 0.17 0.21 0.21 0.36 0.29 0.97 0.96 0.05 0.06 0.13 0.11
RSC 0.08 0.08 0.21 0.21 0.12 0.14 0.75 0.66 0.50 0.47 0.44 0.43
MH 0.15 0.08 0.07 0.07 0.08 0.05 0.94 0.94 0.11 0.08 0.06 0.03
EC 0.08 0.08 0.21 0.21 0.12 0.14 0.92 0.91 0.14 0.13 0.12 0.12
Ʃ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 

in an order of RSC > KI >%Na > EC > SAR > MH. The weightage values are represented as 
a weight matrix (ω) as given Eq.13. Furthermore, in order to obtain final results in a Fuzzy 
evaluation matrix, the membership matrix is multiplied by weight matrix. An index is calculated 
by cumulating all the values in each row (i.e. each class). This index value gives the integrated 
information about the classification by various parameter. The final fuzzy index values of each 
sample are given in the Table. S2.

Fuzzy Based Classifications of Irrigation Water Quality
In the present study, two methods based on (i) Principle of maximum membership function 

(method-1) and (ii) ratio of fuzzy measure elements (method-2) were employed for the fuzzy 
based classification of water. Also, in both the methods, the traditional water quality index 
values were obtained by considering δ=0 in the Eq. 5 and 6. A percentage distribution is shown 
in Table. S3 for the final classification of irrigation water based on a fuzzy comprehensive 
method of evaluation. According to the results of maximum membership degree principle 
(or method-1), the classification about the sample is obtained and the variations of samples 
distribution in each class are represented in the Fig. S3 (a) with respect to the assumed degree of 
variation (δ = 0%, 5%, 10%, 15% and 20%). It reveals that overall, 3.8 %, 3.8%, 2.9%, 3.8% and 
2.9% samples as Not Suitable, corresponding to aforementioned δ values. Whereas, according 
to FCR results 0.98%, 0.98%, 1.96%, 1.96%, 1.96% are under Not Suitable classification, 
corresponding to different degree of variation (δ = 0%, 5%, 10%, 15% and 20%). The variation 
of sample distribution under each classification as per FCR approach (or method-2) at different 
δ values is given Fig. S3 (b). 

However, the impact of considering the degree of variation or fuzziness is not clearly 
evident in the final classification using method-1. As depicted in Fig. S3(a), the classification 
variation, such as the percentage of samples classified under the High Suitable class, remains 
almost unchanged (83.6%) even when considering a δ value of 15%. This lack of discernible 
variation suggests that method-1 fails to capture the fuzziness in the evaluation process, as it 
only considers the maximum element value from the fuzzy matrix, neglecting the measured 
fuzzy information from other elements. Therefore, method-2, which utilizes all measured fuzzy 
information, is necessary. Fig. S3 (d) illustrates the distinct impact of uncertainties near the 
borderline on the final classification when using method-2. This variation may vary across 
different locations and is site-specific, demonstrating the influence of fuzziness near the border 
value on the final classification in this sample dataset. To investigate the impact of result 
derivation on final classification, Fig. S4 illustrates the distribution of non-fuzzy samples (µ = 
1) and fuzzy samples (0 < µ < 1). Initially, under traditional classification (δ=0), 42%, 32.8%, 
25%, and 0.2% of samples fall into Highly Suitable, Suitable, Not Suitable, and Highly Not 
Suitable classes, respectively. As δ increases, the proportion of non-fuzzy samples decreases 
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while fuzzy samples increase. Notably, the distribution of samples in the Suitable class is notably 
inconsistent due to their proximity to class borders in various indices (Fig. 4), signifying high 
uncertainty near these values, potentially impacting groundwater’s final classification. 

      
CONCLUSIONS

The study conducted in Koratagere and Madhugiri sub-districts of Tumkur district, 
Karnataka, aimed to assess groundwater suitability for irrigation using a fuzzy logic-
based Water Quality Index (WQI). The analysis revealed that 54% of groundwater samples 
exhibited a mixed Na-Ca-HCO3 water type, influenced primarily by rock-water interaction. 
Conventional indices classified post-monsoon samples with varying degrees of suitability, 
with notable disparities among individual indices. To address this, a fuzzy-based WQI 
incorporating boundary fuzziness was employed, considering different degrees of variation 
(δ=0%, 5%, 10%, 15%, and 20%). The final water classification was determined using two 
approaches: the Principle of Maximum Membership Function and Fuzzy Class Ratio. The 
latter effectively addressed boundary fuzziness in the dataset. Sample distributions near 
Suitable class boundaries revealed varying percentages of fuzzy samples at different δ 
values, indicating a positive correlation between sample data fuzziness and δ values. This 
underscores how fuzziness in sample distribution within specific indices can impact the final 
classification.

Overall, this study emphasizes a comprehensive approach to evaluating irrigation 
water quality, utilizing Fuzzy logic to handle uncertainty effectively, especially near 
boundary values. The developed methodology, by accounting for uncertainties within and 
among parameters, offers a more accurate assessment, aiding in sustainable agriculture 
practices. This method provides insights into water quality’s impact on crop yield, guiding 
policymakers and irrigation managers towards sustainable groundwater management for 
future generations.
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