
Enhanced Monitoring of Water Quality in Crude Oil Desalting/
Dehydration Plant (DDP) using Soft Sensing Techniques 

Farzaneh Naimi Rad | Mir Mohammad Khalilipour  | Bahareh Bidar | Farhad 
Shahraki | Jafar Sadeghi

Center for Process Integration and Control (CPIC), Department of Chemical Engineering, University of Sistan and 
Baluchestan, Zahedan, Iran

INTRODUCTION

In recent decades, there has been a notable surge in the demand for high-quality crude oil. 
However, the crude oil extracted from most of the world’s oil fields often contains substantial 
impurities, including water in the form of free water or water-in-oil emulsions (suspended 
water droplets in oil), soluble salts, and various sediments. The elevated levels of salt and water 
content in crude oil pose significant challenges during processing, refining, and transportation 
processes, such as corrosion and fouling within operational equipment like pipes, pumps, 
valves, and tanks. Additionally, these impurities can diminish the effectiveness of catalysts in 
subsequent processing units, highlighting the critical importance of producing oil with sufficient 
product purity (Hosseinpour, Ghader, Rahimpour, & Bagheri, 2019; Sotelo, Favela-Contreras, 
Sotelo, Beltrán-Carbajal, & Cruz, 2018). To address these challenges, crude oil is typically 
subjected to processing in a DDP before its conveyance to refineries. DDP systems represent 
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The present study introduces a novel soft sensor based on State Dependent Parameter (SDP) 
models utilizing the Local Instrumental Variables (LIV) method for monitoring a crude oil 
Desalting and Dehydration Plant (DDP) system. A key advantage of the LIV modeling meth-
od is its ability to interpolate directly without necessitating extensive model parameteriza-
tion. Additionally, the inherent complexity and non-linearity of the process are effectively 
addressed by LIV-based soft sensors, which require fewer process variables, thereby reducing 
training time and computational complexity. Two distinct soft sensors were developed to as-
sess the salinity efficiency and water cut efficiency of the DDP system. The efficacy of these 
soft sensors was evaluated using a dedicated testing dataset, revealing a robust correlation 
between salinity efficiency, water cut efficiency, and five secondary parameters. Comparisons 
between SDP-LIV model predictions and real observations of the DDP process show strong 
agreement. By leveraging these developed soft sensors, continuous evaluation of product 
properties is possible with minimal delay compared to traditional laboratory analyses. This 
capability is crucial for pollution control and environmental monitoring, as it allows for re-
al-time detection and mitigation of contaminants in crude oil processing. Lastly, the perfor-
mance of the proposed soft sensor is benchmarked against other models, such as Multiple 
Linear Regression (MLR) and Artificial Neural Networks (ANN), demonstrating superior 
predictive capabilities. This study underscores the potential of SDP-LIV-based soft sensors in 
enhancing environmental protection and operational efficiency in crude oil processing.
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industrial processes aimed at enhancing oil product purity by removing water and soluble salts 
from crude oils. The necessity of DDP systems is multifaceted: they serve to diminish the flow 
of salt content to refinery distillation feed stocks, minimize the energy required for pumping 
and transportation, mitigate corrosion, plugging, and fouling of piping and process equipment, 
and reduced effectiveness of the catalysts that are used for crude oil refining processes. (Ranaee 
et al., 2021). 

The foundational principles of DDP systems encompass three key steps: initially breaking 
emulsions, achieved through various methods such as oil heating, chemical injection, or electric 
field application; subsequently coalescing tiny water droplets into larger ones; and ultimately 
gravity settling and separating free water. Given the inherent difficulty in separating emulsions 
from crude oil, DDP systems constitute complex processes whose performance hinges on 
numerous processing parameters. Extensive studies have been conducted to analyze and 
understand the factors influencing DDP efficiency (K. Mahdi, R. Gheshlaghi, G. Zahedi, & A. 
Lohi, 2008; Nasehi, Sarraf, Ilkhani, Mohammadmirzaie, & Fazaelipoor, 2019). Consequently, 
achieving continuous monitoring and control of DDP systems presents a formidable challenge 
(Dadari, Rahimi, & Zinadini, 2016; Roodbari, Badiei, Soleimani, & Khaniani, 2016). 

The primary or quality variables (e.g., purity, physical or chemical properties) are important 
process variables, which are often difficult to measure online. They are usually obtained through 
laboratory measurement with significant delays (time delay of hours) and infrequent (about some 
samples per day). Soft sensors are developed to overcome measurement problems of primary/
quality variables by monitoring suitable secondary variables (Fortuna, Graziani, Rizzo, & 
Xibilia, 2007; Wang, Liu, & Srinivasan, 2010). Soft sensors are data-driven models, which have 
used statistical and/or artificial intelligence techniques capable of converting information from 
measurable secondary variables (temperature, pressure, flow rates, etc.) to estimate primary or 
quality variables. Use of soft sensors helps to make faster and more appropriate decisions during 
practical difficulties associated with delays in measurements, unreliable measured variables 
due to drifts, fouling or accidental damage of hard sensors, and manual errors in laboratory 
measurements. Many techniques can be used to develop soft sensors based on processing plant 
data. These kinds of soft sensing models are known as data-driven soft sensors (He, Geng, & 
Zhu, 2015; Kadlec, Gabrys, & Strandt, 2009). The simplest approach to building data-driven 
soft sensors is to carry out MLR using the least-squares method, in which the model results 
can be affected by a number of data issues. There are other techniques that range from linear 
based on partial least squares (PLS) (Liu, 2014; Zheng & Funatsu, 2018), principal component 
analysis (PCA) (Jolliffe, 2002; Shi & Xiong, 2018) to nonlinear methods based on neural 
networks (NN) (Pan, Su, Huang, & Wang, 2021; Sun, Huang, Jang, & Wong, 2016; Zhao, Li, & 
Cao, 2019), neuro-fuzzy system (NFS) (AbdulJalee & Aparna, 2016; Zhao et al., 2019), support 
vector regression (SVR) (Herceg, Andrijić, & Bolf, 2019; Zhongda, Shujiang, Yanhong, & 
Xiangdong, 2016), and Gaussian process regression (GPR) (Kanno & Kaneko, 2020; Li, Xu, 
Han, Ge, & Wang, 2019).

A literature survey reveals that though quite a few soft sensors for DDP systems have been 
reported, most of these reported soft sensors are based on machine learning methods. Al-Otaibi 
et al. (M. B. Al-Otaibi, Elkamel, Al-Sahhaf, & Ahmed, 2003) investigated experimentally the 
effect of five process variables e.g. gravity settling, chemical treatment, freshwater injection, 
heating, and mixing on two DDP efficiencies which are defined by salt removal efficiency 
and water cut dehydration efficiency. The results showed that settling time was the most 
influential variable while excessive amounts of the demulsifying agent had adverse effects on 
the performance of the DDP system. In another study, Al-Otaibi et al. (Musleh B Al-Otaibi, 
Elkamel, Nassehi, & Abdul-Wahab, 2005) simulated and optimized the DDP system by applying 
the ANN technique. The performance of the DDP system was evaluated by determining the salt 
removal and water cut efficiencies as quality variables that were expected to depend on five 
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process variables e.g. the salt concentration, heating, concentration of demulsifying agents, 
wash water, and the rate of mixing with wash water. The neural network model predictions were 
shown to be consistent with the experimental data. Abdul-Wahab et al. (Abdul-Wahab, Elkamel, 
Madhuranthakam, & Al-Otaibi, 2006) developed inferential estimators for the salt removal 
and water cut efficiencies of the DDP system in terms of five secondary process variables as 
temperature, settling time, mixing time, chemical dosage, and dilution water rate. The inferential 
estimators were constructed based on MLR and PCA as well as non-linear regression. The 
results showed that the performance of the DDP cannot be fully described by linear models 
and it requires identification of the nonlinear relationship of process variables. Mahdi et al. (K 
Mahdi, REZA Gheshlaghi, Gholamreza Zahedi, & Ali Lohi, 2008) investigated the effect of 
five process variables as demulsifying agent concentration, temperature, wash water dilution 
ratio, settling time, and mixing time with wash water on the performance of the DDP system 
using statistical analysis. They provided one model with five process variables for the salt 
removal efficiency and two models with four and five variables for the water cut efficiency, each 
was valid in a part of the variable domains. The proposed models were successfully tested and 
all were confirmed with experimental data. Kamari et al. (Kamari, Bahadori, & Mohammadi, 
2015) presented a modeling approach based on the least square support vector machine (LS-
SVM) and multilayer perceptron artificial neural network (MLP-ANN) model to calculate the 
salt content in crude oil. The obtained results express the superiority of the LS-SVM model over 
the MLP-ANN model. The literature reveals the importance of using soft sensors to estimate 
the product quality of the DDP system. However, constructing soft sensing models with high 
prediction performance is difficult due to the nonlinear relationship between the efficiency of 
the DDP system and process variables.

The use of the SDP identification technique as a data-driven soft sensor modeling method, 
can be referred to the studies done by Gharehbaghi and Sadeghi (Gharehbaghi & Sadeghi, 
2016) and Bidar et al. (Bidar, Khalilipour, Shahraki, & Sadeghi, 2018; Bidar, Sadeghi, Shahraki, 
& Khalilipour, 2017; Bidar, Shahraki, Sadeghi, & Khalilipour, 2018). Results illustrated that 
SDP-based soft sensors have superiority over the other common data-driven methods like PLS, 
PCR, SVR, ANN, and so on because they have the significant ability to model the nonlinear 
system, whilst the obtained model is simple and interpretable using linear paradigms. In the 
SDP estimations, an Instrumental Variable (IV) is a state that has two specific properties. Each 
IV must be as highly correlated as possible with correspondent regressors and at the same time 
have as little correlation as possible with the other regressors. Otherwise, the estimate of SDPs 
affects each other and since the SDPs are the functions of state variables, distortion occurs in the 
final estimate of SDP. One possible solution to solving the problems related to the back-fitting 
algorithm in the SDP estimations can be the local instrumental variable approach. Hence, Bidar 
et al. (Bidar, Khalilipour, et al., 2018) proposed the SDP modeling approach using the LIV 
method as a novel approach for the identification and modeling of nonlinear systems to predict 
the product quality of the industrial crude distillation unit. In the LIV method, after determining 
IVs there is no need to sort them and also because this method does not consider the effects 
of other regressors and states on the estimation of the desired parameter, it avoids the use of 
a back-fitting algorithm. Parvizi Moghadam et al. (Moghadam, Sadeghi, & Shahraki, 2021) 
proposed soft sensors based on the LIV method for the accurate prediction of isopropyl benzene 
concentration in an industrial distillation column. The results of prediction models have shown 
a very low error percentage and supreme agreement with prediction quality from the rigorous 
model compared with other models.

Previous studies have demonstrated the efficacy of SDP-LIV-based soft sensors in estimating 
processing variables, showcasing their ability to address the complexity and non-linearity 
inherent in the process. Notably, the innovative aspect of this work lies in the utilization of a 
soft sensor based on SDP estimation employing the LIV approach to predict the product quality 
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of DDP. Unlike existing literature, which predominantly focuses on specific aspects of soft 
sensing, such as salt removal efficiency (SRE) or water removal efficiency (WRE), this study 
extends the scope to encompass both, contributing to the relevance of monitoring chemical 
industrial processes. The designed soft sensing models not only facilitate optimal control of the 
DDP system but also offer significant improvements in performance prediction indexes while 
requiring fewer process variables. This reduction in variables not only streamlines training 
time but also minimizes calculation complexity, enhancing the practical applicability of the 
approach.

Moreover, through rigorous comparison with real observations, the model prediction results 
demonstrate the effectiveness of the proposed soft sensor models, which exhibit a simple 
structure yet deliver robust identification based on the essential process parameters of the DDP 
system. The manuscript underscores its practical contribution by furnishing detailed real-world 
industrial data for both SRE and WRE prediction, catering directly to the needs of industrial 
applications. As a result, the proposed soft sensor based on SDP-LIV stands out as a reliable tool 
for real-time monitoring and control of DDP systems. In further validation, the proposed soft 
sensor is rigorously tested against alternative models such as MLR and ANN, highlighting its 
superiority in practical application. This comparative analysis solidifies the value proposition of 
the SDP-LIV-based soft sensor as a preferred choice for predictive modeling within the context 
of DDP systems.

Desalting/Dehydration plant description
A typical DDP removes dissolved salts and water droplets from the oil flow before it can 

be sold. The process flow diagram (PFD) of the desalting/dehydration plant under study is 
shown in Fig. 1 (K. Mahdi et al., 2008). The primary goal of a DDP system is to achieve 
sufficient product purity in terms of salt removal and water cut efficiencies. Based on design 
specifications, the amount of water and salt in crude oil is reduced to 0.10 volume percent 

 
Fig. 1. Schematic of crude oil desalting/dehydration plant (DDP) (Musleh B Al-Otaibi, 

2004) 
 

  

Fig. 1. Schematic of crude oil desalting/dehydration plant (DDP) (Musleh B Al-Otaibi, 2004)
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(%Vol.) and 5.0 pounds per thousand barrels (PTB), respectively. 
The experiments were used to obtain the data according to the real operation process of the 

crude oil supplied by Kuwait Oil Company (KOC). The crude oil samples containing the water-
oil (W/O) emulsion enter the system and after six major steps of addition of fresh water, heating, 
chemical injection, mixing, gravity settling, and electrical coalescing, treated crude pass through 
an analyzer to check the achievement of the design specification of the treated crude. The 
details of these experiments, the characteristics of the dilution water, the chemical demulsifier, 
and the instruments used in the laboratory were presented elsewhere (M. Al-Otaibi, 1999; M. B. 
Al-Otaibi et al., 2003). Experiments are carried out based on KOC standards to study the effect 
of five process parameters including demulsifier dosage (ppm), crude temperature (°C), dilution 
water flow rate in ratio to that of the wet crude’s quantity (%), mixing/settling time (min) on the 
performance of the DDP process as listed in Table 1. 

The performance of the DDP process was evaluated by the salinity efficiency ( 1η ) and water 
cut efficiency ( 2η ) in various process conditions. The salinity efficiency was calculated from 
Eq. (1), whereas water cut efficiency was calculated from Eq. (2), respectively,

1 1 out

in

Z
Z

η = − (1)

2 1 out

in

X
X

η = −
  (2)

where outZ  is outlet salt result (PTB), inZ  is inlet salt result (PTB), outX is outlet water cut 
(%) and inX  inlet water cut (%).

MATERIAL & METHODS

The SDP models express nonlinear aspects of the system using a variable parameter model 
with a linear, simple, and interpretable structure. The parameters of SDP models are functions 

 
 

 Table 1. Description, symbols and values of process parameters of DDP system 
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of time or system states, which can be written in the following form (P. Young, 1998):

 (3)
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∀
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 where ty  is the model output, n  is the number of SDPs/regressors, ,i tz  is the thi  regressor 
and ( )ia ⋅  is the thi  SDP that is a function of ins correspondent states ( , , , 1, 2, ,j i t ix j ns=  ). 
When ,i ta  is assumed to be constant and not state dependent, 0ins = . ( )20,te N σ=  is a zero mean 
white Gaussian distributed unknown noise with variance 2σ .

The LIV method was derived from the weighted least squares (WLS) method which uses 
instrumental variables and local polynomial techniques. The LIV method provides models 
based on the structure of the SDP models as shown in Eq. (3). In this study, the local polynomial 
modeling method (LPM) was used to estimate each state dependent parameters e.g. ,i ta  in Eq. 
(3) (Jianqing Fan, 2018; J Fan & Yao, 2003; Hastie & Tibshirani, 1990; P. C. Young, 2011). 
So, the functionality of the ,i ta  is defined by a local polynomial in the state space, hence it is 
possible to estimate the parameters of these polynomials using the IV method. So, Eq. (3) can 
be rewritten in the new vector form shown in the following equation:

t t t ty e= +z A   (4)

where, tA is the vector of the parameters of local polynomials demonstrating SDPs and tz is 
the new vector of regressors at time sample t. The solution to IV estimation of Eq. (4) at the kth 
sample is calculated as follows:
ˆ T

k k=A U y

( )2ˆ T
k k k kσ=P U U   (5)

( )2 ˆˆ vark kσ = −y ZA

where kP  is the covariance matrix of SDP estimation. kÂ  at the kth sample and 
1, 2, ,k k k p k =  U U U U   is IV matrix of proposed approach, which is called LIV (Bidar, 

Khalilipour, et al., 2018).
The local weighting matrix, ,m kW , can be considered as a diagonal matrix, which its diagonal 

elements are the values of kernel function correspondent to the ith SDP at the kth sample. ,m kW
is defined as,
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λ
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∑ ∑∑

W
 (6)

where (.)k  is the kernel function. ,j ië  is the bandwidth correspondent to j i tx , ,  that is 
known as hyper-parameter and it must be obtained through the optimization procedure (Bidar, 
Khalilipour, et al., 2018). ,j ië , which is known as hyper-parameter correspondent to each state 
of system, j i tx , ,  in LIV method must be fine-tuned to achieve accurate soft sensing model. 
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Clearly, the choice of the hyper-parameter of bandwidth plays an important role in the local 
polynomial fitting. Too large a bandwidth causes over-smoothing, creating excessive modelling 
bias.In this study, Cross Validation (CV) and maximum likelihood (ML) approaches are utilized 
to optimize bandwidths. If ˆkå is the residual at the kth sample when that sample is removed from 
the calculation, and kR is the covariance of ˆkå  , then the CV and concentrated likelihood can 
be defined as,

Cross Validation:

2

1

1 ˆ
N

k
k

CV
N

ε
=

= ∑   (7)

 “Concentrated Likelihood” Function:

( )
2

1 1

ˆ1 1 1log( ) log log
2

N N
k

c k
k k k

L R
N N R

ε
= =

  
= − +  

  
∑ ∑ (8)

The CV must be minimized with respect to the hyper-parameters and the Likelihood has to be 
maximized. Since both the Likelihood function and Cross Validation are a nonlinear functions 
of the unknown hyper-parameters, the minimization needs to be carried out numerically. At the 
beginning of the optimization, hyper-parameters ( ,j ië ) are estimated by either the user or set to 
default values.

Soft sensor design 
The performance of the DDP process depend on the several process parameters, which they 

can be altered in order to reach an optimum combination of operating conditions. In previous 
researches (M. Al-Otaibi, 1999; M. B. AL-Otaibi, 2004; M. B. Al-Otaibi et al., 2003), the 
DDP process has been evaluated to determine the interactions and the combination of process 
parameters based on a series of experimental runs according to a pre-specified design of 
experiment. In DDP process, there are five measured process variables were considered in 
experiments (M. Al-Otaibi, 1999; M. B. Al-Otaibi et al., 2003) included mixing time (min), 
crude oil temperature (°C), demulsifier dosage (ppm), settling time (min), and amount of 
dilution water flow rate in ratio to that of the wet crude’s quantity (%). Compared with these 
measured process variables, the determining salinity and water cut efficiencies is more difficult 
and time-consuming. Thus, it is necessary to modeling these two process efficiencies accurately 
for product monitoring and performance evaluation of DDP system. 

In this study, both salinity and water cut efficiencies and all five process parameters are 
selected for soft sensor development. Table 1 illustrates the values for each process parameter. 
The design of the experiment includes all possible combinations of process parameters within 
the specified range. Crude oil temperature and settling time parameters had the least amount 
of change in the real process. Accordingly, the settling time and crude oil temperature were 
considered only in the high and lower values, and the demulsifier dosage, mixing time, and 
amount of dilution water were tested in different values. Therefore, a total of 980 samples 
from (2×2×5×7×7 runs) experiments for each process parameters were collected (M. Al-Otaibi, 
1999; M. B. AL-Otaibi, 2004; M. B. Al-Otaibi et al., 2003). 

Data collected for soft sensor design were randomly divided into two distinct datasets: a 
training dataset and a testing dataset. Among which 882 samples (90% of the total data) are 
randomly selected as the training samples, and the remaining 98 samples (10% of the total data) 
are used as the testing samples.

Variable selection is a critical aspect of soft sensor model development, significantly 
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influencing its performance by ensuring the inclusion of effective parameter candidates that 
correlate with efficiencies in the DDP system. The presence of numerous input variables 
dramatically increases the computational cost of the model and leads to a large number of 
model parameters to be estimated, generally causing overfitting and diminishing the accuracy 
of the soft sensor model (F. Curreri et al., 2020; F. A.A. Souza et al., 2013). Hence, the careful 
selection of variables is paramount to enhance estimation performance. In this study, salinity 
and water cut efficiencies are identified as the quality variables for soft sensor development. 
Utilizing correlation analysis, variables with the highest Pearson correlation coefficient (R) 
are chosen as potential inputs. Additionally, the backward elimination method is employed 
to iteratively select a subset of explanatory variables for the model. This method involves 
initially including all inputs from the candidate set X identified through correlation analysis, 
followed by the systematic removal of the least significant input, one at a time. Subsequently, 
the soft sensor models are trained using the selected variables, and any inefficient variables are 
eliminated from the model based on optimized hyper-parameter values, ensuring the robustness 
and accuracy of the soft sensor predictions.

The regression modeling is performed between the five secondary variables and the salinity 
efficiency ( 1y ) and water cut efficiency ( 2y ) using Eq. (3). A detailed description of the 
secondary and quality variables for soft sensor design is given in Table 1.  Although the DDP 
process is a multi-output process, it is treated as two single-output processes, so that 1y  and 

2y  are modeled separately. The soft sensor models discussed above are coded in MATLAB 7.7 
version on Intel Core TM, i7CPU, 2.80GHz, 4GB RAM, 64 bit operating system.

The association between variables can be quantified using a correlation coefficient. In this 
study, Pearson’s Correlation Coefficient (R) is adopted to select the most effective secondary 
variables of the soft sensor. It is given by following equation.

 (9)

( )( )
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2 2

1 1

N

i i
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N N

i i
i i

x x y y
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x x y y
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=

− −

∑

∑ ∑

where ix  is the values of the x variable in a sample, x  mean of the values of the x variable, 
iy  values of the y variable in a sample, and y  mean of the values of the y variable.  Fig. 2 

shows the parameter selection steps and diagram of the soft sensor training based on SDP-LIV 
method.

The following performance indexes are employed to evaluate the performance of the 
designed soft sensors. These indicators include root mean square error (RMSE), mean absolute 
error (MAE), the coefficient of determination (R2), and also adjusted R2.

 (10)( )21 ˆRMSE i iy y
N

= −

 (11)
1

ˆ
MAE

N
i ii

y y
N

=
−

= ∑

 (12)

2
2 1

2
1

ˆ( )
1

( )

N
ii

N
ii

y y
R

y y
=

=

−
= −

−
∑
∑



Pollution 2025, 11(1): 175-190183

 (13)( )( )2
2

1 1
1

( 1)adj

R N
R

N k

 − −
 = −

− −  

where N is the number of data, K is the number of predictors and iy , ˆiy , y and ŷ  are referred 
to as the real value, predicted value, mean values of y and , respectively. 

RESULTS AND DISCUSSION

The correlation between input and output variables are determined based on Eq. (9) and 
results are shown in Table 2. Regarding the presented correlation coefficients, all five secondary 
variables are selected for both quality variables. Therefore, all input variables are considered 
as system states, and the respective regressor as one is selected. The SDP-LIV model structure 
for each product quality (salinity and water cut efficiencies) according to Eq. (3) are expressed 
in the following forms:

{ }1, 1, 1 2 3 4 5, , , , 1t t ty a X X X X X e= × +   (14)

{ }2, 2, 1 2 3 4 5, , , , 1t t ty a X X X X X e= × +   (15)

Following the determination of effective variables based on correlation analysis, the backward 
elimination method and optimized bandwidth criterion are employed to eliminate unnecessary 

 
 
 
 

Fig. 2. Schematic diagram of soft sensor training based on the SDP-LIV method  
 

  

Fig. 2. Schematic diagram of soft sensor training based on the SDP-LIV method
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variables from the model. 
The model identification steps for each output variable, according to the proposed strategy, 

are outlined in Fig. 2. Local polynomial regression with a zero-order polynomial is adopted for 
each state variable. In identifying the output of soft sensor model in each step, the bandwidth  
(

The model identification steps for each output variable, according to the proposed strategy, are 

outlined in Fig. 2. Local polynomial regression with a zero-order polynomial is adopted for 

each state variable. In identifying the output of soft sensor model in each step, the bandwidth (

,j iλ ) corresponding to each state variable was determined by the CV optimization method. 

Then, any variable that had more bandwidth than other variables was removed from the model, 

and the model was trained again based on the new set of state variables. If the performance 

indexes of the model are not improved, the removed variable is returned to the model. 

Ultimately, model structures yielding the best performance indexes for both product qualities 

are obtained through repeated training iterations using optimized bandwidths. The optimized 

bandwidths and corresponding performance indexes for the training dataset are tabulated in 

Tables 3 and 4, with the best model performance highlighted in bold. 

The analysis reveals that the removal of any parameter results in a significant escalation in 

error and a subsequent decline in prediction accuracy. Thus, it is evident that all five input 

variables exert a strong influence on both product qualities and are indispensable to the model  . 

Evaluation of the performance indexes of the two soft sensors on the training dataset 

demonstrates exemplary predictive capabilities. For salinity efficiency, the soft sensor yields 

impressive values: R = 0.9984, R² = 1, R²adj = 0.9999, RMSE = 0.6663, and MAE = 0.4640. 

Similarly, the soft sensor's performance for water cut efficiency is remarkable, with R = 1, R² 

= 1, R²adj = 0.9999, RMSE = 0.1551, and MAE = 0.0674. These metrics underscore the 

efficacy and reliability of the proposed soft sensor models in accurately predicting product 

qualities within the DDP system. 

Table 3. Performance indexes and optimized bandwidths for different sets of input 
variables in the SDP-LIV model for salinity efficiency (y1) 

) corresponding to each state variable was determined by the CV optimization method. Then, 
any variable that had more bandwidth than other variables was removed from the model, and 
the model was trained again based on the new set of state variables. If the performance indexes 
of the model are not improved, the removed variable is returned to the model. Ultimately, 
model structures yielding the best performance indexes for both product qualities are obtained 
through repeated training iterations using optimized bandwidths. The optimized bandwidths 
and corresponding performance indexes for the training dataset are tabulated in Tables 3 and 4, 
with the best model performance highlighted in bold.

The analysis reveals that the removal of any parameter results in a significant escalation 
in error and a subsequent decline in prediction accuracy. Thus, it is evident that all five input 
variables exert a strong influence on both product qualities and are indispensable to the model. 

Evaluation of the performance indexes of the two soft sensors on the training dataset 
demonstrates exemplary predictive capabilities. For salinity efficiency, the soft sensor yields 
impressive values: R = 0.9984, R² = 1, R²adj = 0.9999, RMSE = 0.6663, and MAE = 0.4640. 
Similarly, the soft sensor’s performance for water cut efficiency is remarkable, with R = 1, R² = 
1, R²adj = 0.9999, RMSE = 0.1551, and MAE = 0.0674. These metrics underscore the efficacy 
and reliability of the proposed soft sensor models in accurately predicting product qualities 
within the DDP system.
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The RMSE and MAE metrics attest to the high accuracy of the soft sensor models, while 
the R² values nearing 1 signify excellent prediction performance. The close alignment between 
R² and adjusted R² values indicates a model that perfectly predicts output values. To further 
scrutinize the prediction performance, plots depicting the model’s predictions alongside real 
data on the training dataset are presented in Fig. 3. These plots illustrate the soft sensor models’ 
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Fig. 3. Prediction results of output variable on the training dataset: (a) Salinity efficiency 
(y1), (b) zoom of y1 for samples 445-510, (c) Water cut efficiency (y2), (d) zoom of y2 for 

samples 445-510 
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Fig. 3. Prediction results of output variable on the training dataset: (a) Salinity efficiency (y1), (b) zoom of y1 for 
samples 445-510, (c) Water cut efficiency (y2), (d) zoom of y2 for samples 445-510
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adeptness in tracking the trends of the output variables, underscoring their robust performance.
Moving to the testing dataset, Fig. 4 showcases the prediction results obtained using the 

SDP-LIV model with optimized bandwidths for each input variable. Additionally, a graphical 
comparison between the predicted results of the SDP-LIV and ANN soft sensors is provided. 
Notably, the SDP-LIV model exhibits closer alignment with the real data, particularly evident 
in the predicted points of water cut efficiency.

Further performance comparisons are depicted in Fig. 5, utilizing scatter plots for the testing 
dataset. While the prediction results for salinity efficiency demonstrate slight bias within the 
operating range (Fig. 5a), the data points appear tightly distributed along the diagonal line, 
indicative of low estimation bias and smaller estimation variance. Conversely, the estimation 
of water cut efficiency exhibits greater dispersion, indicating comparatively less accurate 
predictions by the SDP-LIV model (Fig. 5c).

In Fig. 5 (b) and (d), performance comparisons in terms of scatter plots for ANN are 
depicted alongside those for the SDP-LIV model. Additionally, Table 5 provides a quantitative 
comparison of the proposed soft sensing model with ANN and MLR soft sensors.

Analysis of the provided performance indexes underscores the stark contrast in prediction 
performance between the MLR soft sensor and the more complex DDP system. The poor 
performance of the MLR model can be attributed to the inherently nonlinear behavior of the 
DDP system. Comparing the results obtained by the ANN model with those of the proposed 
SDP-LIV technique reveals a notable enhancement in soft sensing performance. Specifically, 
the RMSE values for salinity and water cut efficiencies show an improvement of approximately 
10.5% and 15%, respectively, when utilizing the SDP-LIV method compared to ANN soft 
sensors. This improvement is further substantiated by the corresponding MAE values for both 
salinity and water cut efficiencies, with a significant difference observed compared to the MLR 
method, which operates under a linear model.
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Fig. 4. Prediction results of output variables on the testing dataset: (a) Salinity efficiency (y1), (b) Water cut effi-
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Table 5. Performance indexes of the DDP system soft sensors on the testing dataset
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The comprehensive analysis provided by Fig. 4, Fig. 5, and the performance indexes listed 
in Table 5 collectively illustrate the superior predictive capabilities of the SDP-LIV-based soft 
sensors compared to ANN soft sensors. This capability is particularly evident in the SDP-LIV 
model’s ability to better track the trend of real values, highlighting its efficacy and accuracy in 
predicting product qualities within the DDP system.

Fig. 5. Predicted and real value of output variables on the testing dataset: (a) and (b) predicted values of salinity 
efficiency by SDP-LIV model and ANN model respectively, (c) and (d) predicted values of water cut efficiency by 

SDP-LIV model and ANN model respectively
Table 5. Performance indexes of the DDP system soft sensors on the testing dataset 
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CONCLUSION

This study introduces a novel soft sensing approach based on the SDP-LIV model, designed 
to optimize the assessment of desalting and dehydration process efficiencies. Through 
correlation analyses, we identified five critical secondary parameters—temperature, dilution 
water percentage, settling/mixing time, and demulsifier dosage—that significantly influence 
salinity and water cut efficiencies. Using these parameters as predictor variables, our soft sensing 
analyses culminated in the selection of a robust model incorporating all process variables, 
yielding the most accurate estimators for salinity and water cut efficiencies. Comparisons with 
ANN and MLR soft sensors revealed remarkable enhancements. RMSE values for salinity 
and water cut efficiencies improved by approximately 10.5% and 15%, respectively, when 
employing our SDP-LIV method compared to ANN soft sensors. Graphical comparisons further 
highlighted the SDP-LIV model’s superior predictive performance, demonstrating its efficacy 
in outperforming ANN soft sensors. These results underscore the practical significance of our 
proposed method, offering a streamlined yet highly accurate approach for predicting desalting 
and dehydration process efficiencies in real-world applications. Furthermore, the ability to 
accurately monitor and optimize these processes contributes to enhanced pollution control 
by ensuring more efficient removal of contaminants from crude oil. This study highlights the 
potential of SDP-LIV based soft sensors to not only improve operational efficiency but also to 
play a crucial role in environmental protection within the crude oil industry.
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