A Preliminary Study on Mercury Contamination in Artisanal and Small-Scale Gold Mining Area in Mandalay Region, Myanmar by using Plant Samples

Document Type : Original Research Paper

Authors

1 Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan

2 Graduate School of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan

3 Environmental Quality and Standard Division (EQS), Environmental Conservation Department (Head Office), No-53/58, Environmental Conservation Department, Ottara Thiri Township, Nay Pyi Taw, Myanmar, 15015

4 Pollution Control Division (PCD), Environmental Conservation Department (Mandalay Region), Asia Bank Street, Amarapura Township, Mandalay, Myanmar, 100106

5 Pollution Control Division (PCD), Environmental Conservation Department (ECD), No-53/58, Environmental Conservation Department, Ottara Thiri Township, Nay Pyi Taw, Myanmar, 15015

6 Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan Faculty of collaborative regional innovation, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime Prefecture, 790-8577, Japan

Abstract

A large anthropogenic source of mercury pollution is mercury-dependent artisanal and small-scale gold mining (ASGM). Thabeikkyin Township is a small-scale gold mining township located in Pyin Oo Lwin District in the Mandalay Region, Myanmar. The villages of Thabeikkyin Township engage in gold ore crushing, screening, refining, and other mining activities for a living. Miners in this area commonly use mercury for gold recovery by heating amalgam at their homes, gold shops, on the street, and near the riverbank. The evaporated mercury is released into the atmosphere during the heating process and then transported and deposited in the surrounding environments, resulting in the mercury pollution of air, water, soil, etc. To assess atmospheric mercury pollution, a preliminary study on the environmental mercury contamination from ASGM was conducted in Thabeikkyin Township. High mercury concentrations were observed in plant samples collected near the refining sites, ranging 0.33–6.51 ug/g, compared with 0.02 ug/g in Wet Thay Village, where no mercury use was reported. Correlation coefficients between Hg and other heavy metals showed that no heavy metal concentration significantly correlated with that of Hg. The results indicated that the atmospheric environment in the ASGM area of Thabeikkyin Township was contaminated with mercury originating from ASGM, which could very likely deteriorate the health of surrounding residents.

Keywords


Abu Zeid E. H., Khalifa B. A., Said E. N., Arisha A. H. and Reda R. M. (2021). Neurobehavioral and immune-toxic impairments induced by organic methyl mercury dietary exposure in Nile tilapia Oreochromis niloticus. Aquat. Toxicol., 230, 105702.
Ayyat M. S., Ayyat A. M. N., Abd El-Latif K. M., Hessein A. A. and Al-Sagheer A. A. (2020). Inorganic mercury and dietary safe feed additives enriched diet impacts on growth, immunity, tissue bioaccumulation, and disease resistance in Nile tilapia (Oreochromis niloticus). Aquat. Toxicol., 224, 105494.
Baieta R., MihaljevičM., Ettler V., Vaněk A., Penížek V., TrubačJ., Kříbek B., Ježek J., Svoboda M., Sracek O. and Nyambe I. (2021). Depicting the historical pollution in a Pb–Zn mining/smelting site in Kabwe (Zambia) using tree rings. J. Afr. Earth Sci., 181, 104246.
Bargagli R. (2016). Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ., 572, 216-231.
Birke M., Rauch U. and Hofmann F. (2018). Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. J. Geochem. Explor., 187, 97-117.
Black P., Richard M., Rossin R. and Telmer K. (2017). Assessing occupational mercury exposures and behaviours of artisanal and small-scale gold miners in Burkina Faso using passive mercury vapour badges. Environ. Res., 152, 462-469.
Bonanno G. and Cirelli G. L. (2017). Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol. Environ. Saf., 143, 92-101.
Bose-O’Reilly S., Lettmeier B., Matteucci Gothe R., Beinhoff C., Siebert U. and Drasch G. (2008). Mercury as a serious health hazard for children in gold mining areas. Environ. Res., 107(1), 89-97.
Bose-O’Reilly S., Lettmeier B., Shoko D., Roider G., Drasch G. and Siebert U. (2020). Infants and mothers levels of mercury in breast milk, urine and hair, data from an artisanal and small-scale gold mining area in Kadoma / Zimbabwe. Environ. Res., 184, 109266.
Brown S. T., Hasan K. M., Moody K. H., Loving D. C., Howe K. E., Dawson A. G., Drace K., Hugdahl J. D., Seney C. S., Vega C. M., Fernandez L. E. and Kiefer A. M. (2020). Method for mapping Hg0 emissions from gold shops in artisanal and small-scale gold mining communities. MethodsX. 7, 101060.
Browne C. L. and Fang S. C. (1978). Uptake of mercury vapor by wheat an assimilation model. Plant Physiol., 61, 430-433.
Calao-Ramos C., Bravo A. G., Paternina-Uribe R., Marrugo-Negrete J. and Díez S. (2021). Occupational human exposure to mercury in artisanal small-scale gold mining communities of Colombia. Environ. Int., 146, 106216.
Carranza-Rosales P., Said-Fernández S., Sepúlveda-Saavedra J., Cruz-Vega D. E. and Gandolfi A. J. (2005). Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage. Toxicology, 210 (2-3), 105702.
Cecconi E., Incerti G., Capozzi F., Adamo P. ,  Bargagli R., Benesperi R., Candotto Carniel F., Favero-Longo S. E., Giordano S., Puntillo D., Ravera S., Spagnuolo V. and Tretiach M.  (2019). Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods. Environ. Monit. Assess. 191(5), 260.
Chiarantini L., Rimondi V., Benvenuti M., Beutel M. W., Costagliola P., Gonnelli C., Lattanzi P. and Paolieri M. (2016). Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci. Total Environ., 569, 105-113.
Chu J. H., Yan Y. X., Gao P. C., Chen X. W. and Fan R. F. (2020). Response of selenoproteins gene expression profile to mercuric chloride exposure in chicken kidney. Res. Vet. Sci., 133, 4-11.
Ciszewski D., Kubsik U. and Aleksander-Kwaterczak U. (2012). Long-term dispersal of heavy metals in a catchment affected by historic lead and zinc mining. J. Soils Sediments, 12(9), 1445-1462.
Clackett S. P., Porter T. J. and Lehnherr I. (2021). The tree-ring mercury record of Klondike gold mining at Bear Creek, central Yukon. Environ. Pollut., 268, 115777.
Cordy P., Veiga M., Crawford B., Garcia O., Gonzalez V., Moraga D., Roeser M. and Wip D. (2013). Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops. Environ. Res., 125, 82-91.
Dorleku M. K., Nukpezah D. and Carboo D. (2018). Effects of small-scale gold mining on heavy metal levels in groundwater in the Lower Pra Basin of Ghana. Appl. Water Sci., 8(5), 126.
Ericksen J., Gustin M., Schorran D., Johnson D., Lindberg S. and Coleman J. (2003). Accumulation of atmospheric mercury in forest foliage. Atmos. Environ., 37(12), 1613-1622.
Esdaile L. J. and Chalker J. M. (2018). The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chem., 24(27), 6905-6916.
Feingold B. J., Berky A., Hsu-Kim H., Rojas Jurado E. and Pan W. K. (2020). Population-based dietary exposure to mercury through fish consumption in the Southern Peruvian Amazon. Environ. Res., 183, 108720.
Flett L., McLeod C. L., McCarty J. L., Shaulis B. J., Fain J. J. and Krekeler M. P. (2021). Monitoring uranium mine pollution on Native American lands: Insights from tree bark particulate matter on the Spokane Reservation, Washington, USA. Environ. Res., 194, 110619.
Gafur N., Sakakibara M., Sano S. and Sera K. (2018). A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water, 10(11), 1507.
Gjorgieva A. D. (2018). Heavy metals and their general toxicity for plants. Plant Sci. Today, 5(1), 14-18.
Gnamuš A., Byrne A. R. and Horvat M. (2000). Mercury in the Soil-Plant-Deer-Predator Food Chain of a Temperate Forest in Slovenia. Environ. Sci. Technol., 34(16), 3337-3345.
Goix S., Maurice L., Laffont L., Rinaldo R., Lagane C., Chmeleff J., Menges J., Heimbürger L. E., Maury-Brachet R. and Sonke J. E. (2019). Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. Chemosphere, 219, 684-694.
Hajar E. W. I., Sulaiman A. Z. B. and Sakinah A. M. (2014). Assessment of heavy metals tolerance in leaves, stems and flowers of stevia rebaudiana plant. Procedia Environ. Sci., 20, 386-393.
Harada M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol., 25(1), 1-24.
Hachiya N. (2006). The history and the present of Minamata disease - Entering the second half a century. Japan Med. Assoc. J ., 49(3),112-118.
Henriques M. C., Oureiro S. L., Fardilha M. and Herdeiro M. T. (2019). Exposure to mercury and human reproductive health: A systematic review. Reprod. Toxicol., 85, 93-103.
Hossen M. A., Chowdhury A. I. H., Mullick M. R. A. and Hoque A. (2021). Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environ. Nanotechnol. Monit. Manag., 16, 100469.
Hu X. F., Lowe M. and Chan H. M. (2021). Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. Environ. Res., 193, 110538.
Igata A. (1993). Epidemiologic and Clinical Features of Minamata Disease. Environ. Res.,63 (1), 157-169.
Japanese Ministry of the Environment. Mercury Analysis Manual (2004). Tokyo, Japan: Japanese Ministry of the Environment; 2004.
Kabata-Pendias A. (2010). Trace elements in soils and plants. (USA: Basic Books)
Karbassi S., Malek M., Shahriari T. and Zahed M. A. (2016). Uptake of metals by plants in urban areas. Int. J. Environ. Sci. Technol., 13(12), 2847-2854.
Karbassi S., Nasrabadi T. and Shahriari, T. (2016). Metallic pollution of soil in the vicinity of National Iranian Lead and Zinc (NILZ) Company. Environ. Earth Sci., 75(22), 1-11.
Kawakami T., Konishi M., Imai Y. and Pyae S. S. (2019). Diffusion of mercury from artisanal small-scale gold mining (asgm) sites in Myanmar Int. J. Geomate., 17(61), 228-235.
Khan F. U., Rahman A. U., Jan A. and Riaz M. (2004). Toxic and trace metals (Pb, Cd, Zn, Cu, Mn, Ni, Co and Cr) in dust, dustfall/soil. J. Chem. Soc. Pak., 26(4), 453-456.
Khin T. O. and Hla K. (2019). Assessment on environmental impacts of gold mining in wetthe-phatshe area of Thabeikkyin township. Yadanabon University Research Journal. 10(1).
Kimáková T., Vargová V., Onačillová E., Cimboláková I., Uher I., Harich P., Schuster J. and Poráčová J. (2020). Mercury accumulation in plants from contaminated arable lands in Eastern Slovakia. Ann. Agric. Environ. Med., 27(1), 29-35.
Kono Y., Rahajoe J. S., Hidayati N., Kodamatani H. and Tomiyasu T. (2012). Using native epiphytic ferns to estimate the atmospheric mercury levels in a small-scale gold mining area of West Java, Indonesia. Chemosphere, 89(3), 241-248.
Kyaw W. T., Kuang X. and Sakakibara M. (2020). Health Impact Assessment of Artisanal and Small-Scale Gold Mining Area in Myanmar, Mandalay Region: Preliminary Research. Int. J. Environ. Res. Public Health, 17(18), 6757.
Lacerda L. D. and Salomons W. (1998). Mercury from Gold and Silver Mining: A Chemical Time Bomb?. Springer-Verlag, Berlin, Heidelberg. Edition: Softcover reprint of the original 1st ed. 1998.
Lindberg S. E., Jackson D. R., Huckabee J. W., Jansen S. A., Levin M. J. and Lund J. R. (1979). Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J. Environ. Qual., 8, 572-578.
Liu Z., Chen B., Wang L. A., Urbanovich O., Nagorskaya L., Li X. and Tang L. (2020). A review on phytoremediation of mercury contaminated soils. J. Hazard. Mater., 400, 123138.
Malizia D., Giuliano A., Ortaggi G. and Masotti A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil. Chem. Cent. J., 6(S2), 56.
Marrugo-Negrete J., Marrugo-Madrid S., Pinedo-Hernández J., Durango-Hernández J. and Díez S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci. Total Environ., 542, 809-816.
Massa N., Andreucci F., Poli M., Aceto M., Barbato R. and Berta G. (2010). Screening for heavy metal accumulators amongst autochthonous plants in a polluted site in Italy. Ecotoxicol. Environ. Saf., 73, 1988-1997.
Mason R. P., Baumann Z., Hansen G., Yao K. M., Coulibaly M. and Coulibaly S. (2019). An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire. Sci. Total Environ., 665, 1158-1167.
Merian E. (1984). Introduction on environmental chemistry and global cycles of chromium, nickel, cobalt beryllium, arsenic, cadmium and selenium, and their derivatives. Toxicol. Environ. Chem., 8(1), 9-38.
McNaughton S. J., Folsom T. C., Lee T., Park F., Price C., Roeder D., Schmitz J. and Stockwell C. (1974). Heavy metal tolerance in Typha latifolia without the evolution of tolerant races. Ecology, 55, 1163-1165.
Moody K. H., Hasan K. M., Aljic S., Blakeman V. M., Hicks L. P., Loving D. C., Moore M. E., Hammett B. S., Silva-González M., Seney C. S. and Kiefer A. M. (2020). Mercury emissions from Peruvian gold shops: Potential ramifications for Minamata compliance in artisanal and small-scale gold mining communities. Environ. Res., 182, 109042.
Moore T. R., Bubier J. L., Heyes A. and Flett R. J. (1995). Methyl and total mercury in boreal wetland plants, experimental lakes area, Northwestern Ontario. J. Environ. Qual., 24(5), 845-850.
Niane B., Guédron S., Feder F., Legros S., Ngom P. M. and Moritz1 R. (2019). Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. Sci. Total Environ., 669, 185-193.
Ogbonna P. C., Nwokolo S. N. and da Silva J. A. T. (2011). Heavy metal pollution in soil and plants at bone char site. Toxicol. Environ. Chem., 93(10), 1925-1933.
Palacios-Torres Y., Caballero-Gallardo K. and Olivero-Verbe J. (2018). Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere, 193, 421-430.
Pavilonis B., Grassman J., Johnson G., Diaz Y. and Caravanos J. (2017). Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environ. Res., 154, 1-9.
Panagos P., Van Liedekerke M., Yigini Y. and Montanarella L. (2013). Contaminated sites in europe: review of the current situation based on data collected through a european network. J. Environ. Public Health. 2013,1-11.
Prasetia H., Sakakibara M., Omori K., Laird J., Sera K. and Kurniawan I. (2018). Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia. Geosciences, 8(1), 31.
Prasetia H., Sakakibara M. and Sera K. (2020). Preliminary Study of Atmospheric Mercury Contamination Assessment Using Tree Bark in an ASGM Area in North Gorontalo Regency, Indonesia. IOP Conf. Ser.: Earth Environ. Sci., 536, 012007.
Reichelt-Brushett A. J., Stone J., Howe P., Thomas B., Clark M., Male Y., Nanlohy A. and Butcher P. (2017). Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety. Environ. Res., 152, 407-418.
Rimondi V., Costagliola P., Benesperi R., Benvenuti M., Beutel M. W., Buccianti A., Chiarantini L, Lattanzi P., Medas D. and Parrini P. (2020). Black pine (Pinus nigra) barks: A critical evaluation of some sampling and analysis parameters for mercury biomonitoring purposes. Ecol. Indic., 112, 106110.
Sasmaz A., Obek E. and Hasar H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol. Eng., 33(3-4), 278-284.
Sawidis T., Breuste J., Mitrovic M., Pavlovic P. and Tsigaridas K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut., 159(12), 3560-3570.
Siegel S. and Siege B. (1987). Biogenesis of carbon monoxide: production by fungi and seed plants in the dark. Phytochemistry, 26(12), 3117-3119.
Siegel S. and Veiga M. M. (2009). Artisanal and small-scale mining as an extralegal economy: De Soto and the redefinition of ‘formalization’. Resour. Policy, 34, 51-56.
Steckling N., Boese-O'Reilly S., Gradel C., Gutschmidt K., Shinee E., Altangerel E., Badrakh B., Bonduush I., Surenjav U. and Ferstl P. (2011). Mercury exposure in female artisanal small-scale gold miners (ASGM) in Mongolia: An analysis of human biomonitoring (HBM) data from 2008. Sci. Total Environ., 409(5), 994-1000.
Tabelin C. B., Silwamba M., Paglinawan F. C., Mondejar A. J. S., Duc H. G., Resabal V. J., Opiso E. M., Igarashi T., Tomiyama S., Ito M., Hiroyoshi N. and Villacorte-Tabelin M. (2020). Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere, 260, 127574.
Telmer K. H. and Veiga M. M. (2009). World emissions of mercury from artisanal and small scale gold mining. Mercury Fate and Transport in the Global. Atmosphere, 131-172.
Tenea A. G., Vasile G. G., Paun G. A. and Mureseanu M. (2020).MATRIX-TYPE CERTIFIED REFERENCE MATERIALS FOR QUALITY CONTROL OF METAL DETERMINATION FROM SOLID ENVIRONMENTAL AND VEGETATION SAMPLES. Rom. J. Ecol. Environ. Chem. 2(1), 21-27.
Terán-Mita T. A., Faz A., Salvador F., Arocena J. M. and Acosta J. A. (2013). High altitude artisanal small-scale gold mines are hot spots for Mercury in soils and plants. Environ. Pollut., 173, 103-109.
The United Nations Environment Programme (UN Environment). Global Mercury Assessment 2018. (2019). Available: https://wedocs.unep.org/20.500.11822/27579.
Tun A. Z., Wongsasuluk P. and Siriwong W. (2020). Heavy metals in the soils of placer small-scale gold mining sites in Myanmar. J. Health Pollut., 10(27), 200911.
Vareda J. P., Valente A. J. and Durães L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manage. 246, 101-118.
Vareda J. P., Valente A. J. and Durães L. (2016). Heavy metals in Iberian soils: removal by current adsorbents/amendments and prospective for aerogels. Adv. Colloid Interface Sci., 237, 28-42.
Viso S., Rivera S., Martinez-Coronado A., Esbrí J. M., Moreno M. M. and Higueras P. (2021). Biomonitoring of Hg0, Hg2 and particulate Hg in a mining context using tree barks. Int. J. Environ. Res. Public Health., 18(10), 5191.
World Health Organization (WHO), Mercury and health. 2017. Available: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health [Accessed 22th June 2020].
Xiao Z., Sommar J., Lindqvist O. and Giouleka E. (1998). Atmospheric mercury deposition to grass in southern Sweden. Sci. Total Environ., 213(1-3), 85-94.
Yang Y., Yanai R. D., Driscoll C. T., Montesdeoca M. and Smith K. T. (2018). Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA. PLOS ONE., 13(4), 0196293.
Yorifuji T., Takaoka S. and Grandjean P. (2018). Accelerated functional losses in ageing congenital Minamata disease patients. Neurotoxicol. Teratol., 69, 49-53.